1) найдём площадь основания: проведём высоту, видим прямоугольный треугольник с углом в 30 градусов => по свойству прямоугольного треугольника высота ( как противолежащая сторона) будет равна половине гипотенузы: 8/2=4. Площадь параллелограмма равна произведению высоты на основание: 4*4=16
2) найдём третью недостающую сторону: параллелепипед прямоугольный, значит диагональ с двумя другими сторонами будет составлять прямоугольный треугольник (диагональ будет являться гипотенузой), гипотенуза-наибольшая сторона в треугольнике, поэтому она проведена к стороне 4 (т.к.5<8), тогда по т.пифагора третья сторона равна sqrt(25-16)= 3.
3) объём равен произведению площади основания на высоту ( в данном случае-третья сторона) V= 3*16=48
Рассматриваем две плоскости А1АВ и С1СД с пересекающимися в них параллельными прямыми АА1 IICC1, ABIICД. Допускаем, что плоскости не параллельны и пересекаются по некоторой прямой. Эта прямая принадлежит плоскости С1СД. Прямые . АА1 и АВ параллельны плоскости С1СД, как параллельные СС1 и СД. Отсюда АА1 и АВ не пересекают прямую плоскости С1СД. Мы имеем две параллельные прямые в плоскости А1АВ, проходящие через точку А и параллельные прямой пересечения плоскостей А1АВ и С1СД. Но это невозможно по аксиоме параллельных. Отсюда наши плоскости параллельны .
Объяснение:
1) найдём площадь основания: проведём высоту, видим прямоугольный треугольник с углом в 30 градусов => по свойству прямоугольного треугольника высота ( как противолежащая сторона) будет равна половине гипотенузы: 8/2=4. Площадь параллелограмма равна произведению высоты на основание: 4*4=16
2) найдём третью недостающую сторону: параллелепипед прямоугольный, значит диагональ с двумя другими сторонами будет составлять прямоугольный треугольник (диагональ будет являться гипотенузой), гипотенуза-наибольшая сторона в треугольнике, поэтому она проведена к стороне 4 (т.к.5<8), тогда по т.пифагора третья сторона равна sqrt(25-16)= 3.
3) объём равен произведению площади основания на высоту ( в данном случае-третья сторона) V= 3*16=48