М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
gmailua
gmailua
04.10.2020 16:31 •  Геометрия

Даны длины трех отрезков. выберите варианты, для которых возможно построить треугольник со сторонами из данных отрезков. отметьте все соответствующие ответы: 40.5 см, 26.5 см, 19.5 см 21.5 см, 63 см, 33.5 см 16 см, 22 см, 50 см 7 см, 8 см, 10 см 9 см, 6 см, 7 см 35.5 см, 18 см, 28.5 см 5.5 см, 14 см, 6.5 см

👇
Ответ:
dstepin17
dstepin17
04.10.2020

1)40,5+26,5>19,5

26,5+19,5>40,5

19,5+40,5>26,5-можно

2)21,5+63>33,5

63+33,5>21,5

21,5+33,5<63-нельзя

3)50+22>16

16+50>22

22+16<50-нельзя

4)7+8>10

7+10>8

10+8>7-можно

5)9+6>7

9+7>6

6+7>9-можно

6)35,5+18>28,5

35,5+28,5>18

28,5+18>35-можно

7)5,5+14>6,5

14+6,5>5,5

5,5+6,5<14-нельзя

4,7(1 оценок)
Открыть все ответы
Ответ:
ропчан
ропчан
04.10.2020
1. Похила утворює з плошини кут 30 градусов. Знайти довжину похилої, якщо довжина перпендикуляра 7 см. Треуг - к прямоугольный, поэтому наклонная равна 7 * 2 = 14 см по свойс-ву катета против угла 30 град. 2. З точки до площини проведено похилі, довжини яких дорівнюють 13см і 15 см. Знайти довжину прекції другої похилої, якщо довжина проекції першої похилої 5см Якщо довжина проекції першої похилої 5см, а похила дорівнює13, Тоді перпендикуляр дорівнює за теоремою Пифагора 12 см. Розглядаючи другий трикутник за т. Піфагора проекція буде дорівнювати 9 см.
4,5(60 оценок)
Ответ:
Беня2018
Беня2018
04.10.2020
Так как EC - биссектриса, то:
\frac{DC}{ED} = \frac{CK}{EK} \ \ \textless \ =\ \textgreater \ \ \frac{CK}{DC}= \frac{EK}{ED}
при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
x= \frac{x_1+\lambda *x_2}{1+\lambda} \\y= \frac{y_1+\lambda *y_2}{1+\lambda} \\\lambda= \frac{m}{n}
ищем длины сторон:
для этого используем формулу |AB|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}
|ED|=\sqrt{(3+4)^2+7^2}=\sqrt{98} \\|EK|=\sqrt{(3-8)^2+(2-3)^2}=\sqrt{26} \\|DK|=\sqrt{144+64}=\sqrt{208}
находим координаты точки C:
x_1=8;\ x_2=-4;\ y_1=3;\ y_2=-5 \\\lambda= \frac{CK}{DC} = \frac{EK}{ED} = \frac{\sqrt{26}}{\sqrt{98}}=\sqrt{ \frac{26}{98} }=\sqrt{ \frac{13}{49} } = \frac{\sqrt{13}}{7} \\C( \frac{8+ \frac{\sqrt{13}}{7} *(-4)}{1+ \frac{\sqrt{13}}{7}} ; \frac{3+ \frac{\sqrt{13}}{7}*(-5)}{1+ \frac{\sqrt{13}}{7}} )=C( \frac{8- \frac{4\sqrt{13}}{7} }{ \frac{7+\sqrt{13}}{7} } ; \frac{3- \frac{5\sqrt{13}}{7} }{\frac{7+\sqrt{13}}{7}} )=
=C( \frac{ \frac{56-4\sqrt{13}}{7} }{\frac{7+\sqrt{13}}{7}}; \frac{ \frac{21-5\sqrt{13}}{7} }{\frac{7+\sqrt{13}}{7}})=C( \frac{56-4\sqrt{13}}{7+\sqrt{13}} ; \frac{21-5\sqrt{13}}{7+\sqrt{13}} )
теперь определим вид треугольника для этого используем теорему косинусов:
вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый.
Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для DK и косинуса угла E:
DK^2=ED^2+EK^2-2ED*EK*cosE \\cosE= \frac{ED^2+EK^2-DK^2}{2ED*EK} = \frac{98+26-208}{2\sqrt{98*26}}\ \textless \ 0
cosE<0 поэтому угол тупой и треугольник тупоугольный
ответ:
1) C( \frac{56-4\sqrt{13}}{7+\sqrt{13}} ; \frac{21-5\sqrt{13}}{7+\sqrt{13}} )
2) треугольник тупоугольный
4,6(65 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ