Теория - основа для решения задач. Раз изучаете вписанные и описанные окружности, наверняка уже знаете, что центр вписанной в треугольник окружности находится в точке пересечения его биссектрис. Знаете также и то, что центр описанной окружности - в точке пересечения срединных перпендикуляров, проведенных к каждой из его сторон. В равностороннем треугольнике все биссектрисы и высоты пересекаются в одной точке, и эта точка - центр и вписанной, и описанной окружности, так как высота равностороннего треугольника и есть срединный перпендикуляр к стороне. Почему - доказывать не стоит, наверняка знаете. О том, что медианы треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2:1- считая от вершины, Вы уже должны знать. Вот на знании всех этих свойств и построено решение задачи. Точка пересечения биссектрис треугольника равноудалена от всех его сторон. Расстояние от нее до стороны - радиус вписанной окружности. В равностороннем треугольнике это 1/3 медианы - и это и 1/3 биссектрисы и 1/3 высоты ( три в одном флаконе). Радиус описанной вокруг равностороннего треугольника окружности - расстояние от точки пересечения высот до вершин треугольника, и это расстояние в два раза больше расстояния от точки пересечения биссектрис (высот) до стороны треугольника. Итак, радиус описанной вокруг равностороннего треугольника окружности в два раза больше радиуса вписанной в него. R=2r= 5*2=10 cм См. рисунок в качестве иллюстрации.
Теория - основа для решения задач. Раз изучаете вписанные и описанные окружности, наверняка уже знаете, что центр вписанной в треугольник окружности находится в точке пересечения его биссектрис. Знаете также и то, что центр описанной окружности - в точке пересечения срединных перпендикуляров, проведенных к каждой из его сторон. В равностороннем треугольнике все биссектрисы и высоты пересекаются в одной точке, и эта точка - центр и вписанной, и описанной окружности, так как высота равностороннего треугольника и есть срединный перпендикуляр к стороне. Почему - доказывать не стоит, наверняка знаете. О том, что медианы треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2:1- считая от вершины, Вы уже должны знать. Вот на знании всех этих свойств и построено решение задачи. Точка пересечения биссектрис треугольника равноудалена от всех его сторон. Расстояние от нее до стороны - радиус вписанной окружности. В равностороннем треугольнике это 1/3 медианы - и это и 1/3 биссектрисы и 1/3 высоты ( три в одном флаконе). Радиус описанной вокруг равностороннего треугольника окружности - расстояние от точки пересечения высот до вершин треугольника, и это расстояние в два раза больше расстояния от точки пересечения биссектрис (высот) до стороны треугольника. Итак, радиус описанной вокруг равностороннего треугольника окружности в два раза больше радиуса вписанной в него. R=2r= 5*2=10 cм См. рисунок в качестве иллюстрации.
Рассмотрим треугольник MNP:
М = 65 °
MNP = N 2 = 80 °: 2 = 40 °
N = 180 ° - (65 + 35) = 180-100 = 80 °
NPM = 180 ° - (40 + 65) = 75 °
Рассмотрим треугольник KNP:
KNP = 40 °
K = 35 °
NPK = 180 ° -NPM = 180 ° -75 = 105 ° (так смежные)
Итак треугольник MNP не = KNP
Отсюда MP меньше PK