A1.
Sшестиугольника = 
ответ: 4
A2.
Правильный четырёхугольник - это квадрат. Так как он вписан в окружность, то диаметр окружности будет равен диагонали квадрата. Диагонали квадрата пересекаются в центре и делят его на 4 одинаковых прямоугольных равнобедренных треугольника с бок. сторонами = R ⇒ S квадрата равна площади четырех треугольников:


ответ: 1
A3.
Правильный шестиугольник состоит из 6 равносторонних треугольников, стороны которых равны a, а высоты равны радиусу R. Найдем, чему равны стороны через высоту (радиус):


Площадь одного треугольника будет равна:


Площадь шестиугольника:

ответ: 2
B1.
Пусть вписанный треугольник - ΔABC, сторона =
; описанный - ΔA₁B₁C₁, сторона - 
Для ΔA₁B₁C₁ радиус
высоты 

⇒
⇒ 


Для ΔABC радиус R =
высоты
:
⇒
⇒ 

Найдем соотношение периметров и площадей:

№1 трапеция АВСД, СД=25, ОД=15, ОВ=9, треугольник АОВ подобен треугольнику ДОС по двум равным углам (уголАОВ=уголДОС как вертикальные, уголДСО=уголВАО как внутренние разносторонние), АВ/СД=ОВ/ОД, АВ/25=9/15, АВ=25*9/15=15, ДС/АВ=ОС/ОА, 25/15=ОС/ОА, 5/3=ОС/ОА, площади подобных треугольников относятся как квадраты подобных сторон, площадь АОВ/площадь ДОС=АВ в квадрате/СД в квадрате=225/625=9/25
№2 треугольник АВС подобен трецугольнику КМН по третьему признаку (три стороны одного треугольника пропорцианальны трем сторонаим другого), АВ/КМ=8/10=4/5, ВС/МН=12/15=4/5, АС/КН=16/20=4/5, пропорции равны, вподобных треугольниках против подобных сторон лежат равные углы, уголА=уголК=80, уголВ=уголМ=60, уголС=уголН=(180-80-60)=40
№3 трапеция АВСД, ВС=4, АД=12, площадь АОД=45, треугольник ВОС подобен треугольнику АОД по двум равным углам (уголВОС=уголАОД как вертикальные, уголОАД=уголВСО как внутренние разносторонние), площади относятся как квадраты сторон, ВС/АД=4/12=1/3, площадь ВОС/площадь АОД=(ВС/АД) в квадрате, площадь ВОС/45=1/9, площадь ВОС=45*1/9=5