М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
spetsialist
spetsialist
05.10.2022 17:04 •  Геометрия

Три шара радиусами r касаются друг друга и каждый из них касается боковой поверхности конуса. центры шаров находятся вне конуса. высота конуса перпендикулярна плоскости содержащей центры шаров. угол между высотой и образующей равен ф. найдите расстояние от вершины конуса до плоскости а.

👇
Ответ:
lurudzheva
lurudzheva
05.10.2022
Если под плоскостью а понимать плоскость, проходящая по нижней части шаров, то решение будет таким:
Оси шаров образуют равносторонний треугольник со стороной 2R.
Расстояние в плане от оси шара до оси конуса (обозначим его АО) равно 2/3 высоты (она же и медиана) этого треугольника.
 АО = (2/3)*(2R√3)/2) = 2R√3 / 3 = 2R / √3.
Проведём сечение по оси одного их шаров и по оси конуса.
Расстояние от оси шара до образующей конуса равно R*tg(90-ф)/2).
 Расстояние от образующей до оси конуса (радиус конуса) равно:
(2R / √3) - R*tg(90-ф)/2).
Отсюда искомая величина (это высота конуса до основания шаров) равна ((2R / √3) - R*tg(90-ф)/2)) / tg Ф.
Для примера приводится чертёж с разрезом по оси шара радиусом 10 и углом Ф=20°.
√3 = 1.732051 
  R/V3*tgφ=  15.86257
2-V3*ctg(φ/2) =0.787204968 = 12.48709
2R/V3 = 11.5470.
Три шара радиусами r касаются друг друга и каждый из них касается боковой поверхности конуса. центры
4,8(11 оценок)
Открыть все ответы
Ответ:
Xopccc13377
Xopccc13377
05.10.2022
ответ:

27\sqrt{3} ед².

Объяснение:

Обозначим данную пирамиду буквами EABC.

AB=6 ед.

Проведём высоту EO. Точка O - центр \triangle ABC - точка пересечения, медиан, высот и биссектрис треугольника.

Проведём апофему EH (апофема - это высота боковой грани пирамиды, проведённая из вершины пирамиды) к стороне BC основания пирамиды.

Т.к. данная пирамида - правильная, треугольная ⇒ основание пирамиды - правильный треугольник.

\Rightarrow AB = BC = AC = 6.

Проведём высоту AH в \triangle ABC.

Т.к. \triangle ABC - равносторонний ⇒ AH - высота, медиана, биссектриса.

\Rightarrow BH = HC = BC:2 = 6:2 = 3

Высота AH и апофема EH имеют общее основание, а именно точку H, т.к. AH - медиана, а апофема EH делит BC пополам (по свойству).

\angle EHO = 60^{\circ}.

Рассмотрим \triangle AHC:

\triangle AHC - прямоугольный, так как AH - высота.

Найдём высоту AH по теореме Пифагора: (a^2 = c^2 - b^2)

AH = \sqrt{AB^2 - BH^2} = \sqrt{6^2 - 3^2} = \sqrt{27} = 3\sqrt{3} ед.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Точка O - пересечение медиан и делит их в отношении 2 : 1, считая от вершины.

\Rightarrow OH = 1/3AH = 1/3 \cdot 3\sqrt{3} = \sqrt{3} ед.

AO = 2/3AH = 2/3 \cdot 3\sqrt{3} = 2\sqrt{3} ед.

Рассмотрим \triangle EOH:

\triangle EOH - прямоугольный, так как EO - высота.

Если угол прямоугольного треугольника равен 60^{\circ}, то напротив лежащий катет равен произведению меньшего катета на \sqrt{3}.

EO = OH \cdot \sqrt{3} = \sqrt{3} \cdot \sqrt{3}= 3 ед.

Найдём апофему по теореме Пифагора: (c^2 = a^2 + b^2)

EH = \sqrt{EO^2 + OH^2} = \sqrt{3^2 + (\sqrt{3})^2} = \sqrt{12} = 2\sqrt{3} ед.

====================================================

S полн. поверх. = S основ. + S бок.поверх.

S осн. = S_{\triangle ABC} = \dfrac{AB^2\sqrt{3}}{4} = \dfrac{6^2\sqrt{3}}{4} = 9\sqrt{3} ед².

S бок. поверх. = 1/2 \: \cdot (P осн. \cdot \: L), где L - апофема.

P осн. = AB + BC + AC = 6 + 6 + 6 = 18 ед.

S бок. поверх. = 1/2\cdot(18 \cdot 2\sqrt{3}) = 18\sqrt{3} ед².

S полн. поверх. = 9\sqrt{3} + 18\sqrt{3} = 27\sqrt{3} ед².


сторона основания правильной треугольной пирамиды равна 6 боковая грань наклонена к плоскости основа
4,7(15 оценок)
Ответ:
Zenya1111
Zenya1111
05.10.2022
Первая задача: Так как плоскость задается точкой и прямой, а все три пересекающиеся между собой прямые пересекают четвертую, то и точки А, В и С принадлежат одной плоскости, в которой и лежат те три прямые.
Вторая задача: Прямая ВС лежит в плоскости (АВС), так как 2 её точки В и С лежат  в плоскости (АВС). Прямая АМ пересекает плоскость (АВС) в точке А, не лежащей на ВС, значит АМ и ВС скрещивающиеся прямые.
Третья задача: PK  средняя линия треугольника АВС, поэтому равна 1/2 ВС=8:2=4Доказательство. МН средняя линия треугольника DBC (по условию), значит МН || BC и с плоскостью МНК. не имеет общих точек, поэтому РК тоже не может иметь с ВС общих точек, но РК и ВС лежат в одной плоскости треугольника АВС, значит РК и ВС параллельны. Так, как к середина АС, то и Р должна быть серединой АВ.

Этого хватит, ты мало выставил, так бы все решил. Удачи!!
4,8(26 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ