Відповідь:
Пояснення:
по теоремі про три пенрпендикуляра( зворотня) :Якщо пряма, яка лежить у площині, перпендикулярна до проекції похилої на цю площину, то вона перпендикулярна і до самої похилої. І навпаки: якщо пряма, яка лежить у площині, перпендикулярна до похилої, то вона перпендикулярна і до самої проекції на цю площину.
ОС- це проекція ОЕ на площину АВСД, Так як ∠ЕОД=90°, то и ∠СОД=90° .
Так як ∠ЕОД=90, то діагоналі АС і ВД перпендикулярні. За властивістю диагоналей ромба: Якщо у паралелограма діагоналі перпендикулярні, то такий паралелограм – ромб.
Отже АВСД- ромб.
2. Sabcd = AC · BD /2 = 10·8/2 = 40 см²
Диагонали ромба перпендикулярны и точкой пересечения делятся пополам. Поэтому
АО = АС/2 = 10/2 = 5 см
BO = BD/2 = 8/2 = 4 см
ΔABO: ∠AOB = 90°, по теореме Пифагора
AB = √(AO² + BO²) = √(25 + 16) = √41 см
Pabcd = 4·AB = 4√41 см
3. Проведем ВН⊥AD.
ΔАВН: ∠АНВ = 90°, ∠ВАН = 30°, ⇒ ВН = АВ/2 = 30/2 = 15 см (по свойству катета, лежащего напротив угла в 30°)
Sabcd = AD·BH = 52·15 = 780 см²