М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Nadya1111111111111
Nadya1111111111111
25.06.2020 05:12 •  Геометрия

Стороны треугольника равняются 12см,50 см и 58см. найти на большую высоту треугольника

👇
Ответ:
Площадь треугольника находим по формуле Герона
р=\frac{12+50+58}{2}=60
\sqrt{60(60-12)(60-50)(60-58)} = \sqrt{60*48*10*2} = 240
площадь треугольника равна: 240
наибольшая высота равна: \frac{2*240}{12} = 40
4,8(62 оценок)
Открыть все ответы
Ответ:
Demongirl1
Demongirl1
25.06.2020

Задача 2.

\angle{AOD} = \frac{\pi}{3} = 60^{o}

Задача 3.

Проекциями прямых параллельных сторонам исходного параллелограмма будут прямые, проходящие через т. пересечения диагоналей и середины сторон у параллелограмма проекции

Объяснение:

Дано

АВСД - прямоугольник

АВ = 6 см

АД = 2√3 см

Найти

уг. м/ду АС и ВД

Решение

Очевидно, что АС и ВД - диагонали прямоугольника.

Обозначим т. пересечения как т. О

Тогда уг.АОД - искомый угол между диагоналями.

Обозначим

{\angle AOD} = \alpha

По св-вам прямоугольника, его диагонали равны и в т. пересечения делятся пополам. Т.е.

АО = ОС = ВО = ОД

По Т. Пифагора можно найти диагонали:

ВД² = АВ² + АД²

BD = \sqrt{AB^2 + AD^2} \\ BD = \sqrt{6^2 + 2\sqrt(3)^2}

BD = \sqrt{AB^2 + AD^2} \\ BD = \sqrt{6^2 + 2\sqrt(3)^2} = \sqrt{36 + 4 \cdot3} \\ BD = \sqrt{48} = \sqrt{16\cdot3} = 4 \sqrt{3}

Соответственно

АС = ВД = 4√3

Рассмотрим тогда треугольник АОД, он равнобедренный, т.к.

AO = OD = \frac{4\sqrt3}{2} = 2 \sqrt{3}

Так же 2√3 равна и сторона АД нашего прямоугольника.

То есть - мы получаем, что

АО = ОД = АД = 2√3

Следовательно - ∆АОД равносторонний,

а это означает, что искомый угол AOД

\alpha = \angle{AOD} = \frac{\pi}{3} = 60^{o}

Для особо дотошных:

По Т. косинусов имеем:

\small {AD^2=AO^2+OD^2-AO\cdot OD \cdot 2\cos{ \alpha}}

Отсюда

{\cos{ \alpha} = \frac {AO^2+OD^2-AD^2}{2 \cdot AO\cdot OD }} \\ {\cos{ \alpha} = \frac {(2 \sqrt{3})^2 +(2 \sqrt{3})^2 -(2 \sqrt{3})^2 }{2 \cdot 2 \sqrt{3} \cdot 2 \sqrt{3} }} \\ { \cos \alpha = \frac {12 + 12 - 12}{2 \cdot12}} = \frac{12}{24} = \frac{1}{2} \\ \cos \alpha = \frac{1}{2} = \alpha = \frac{\pi}{3} = 60^{o}

4,5(13 оценок)
Ответ:
Task/26565292

AB (1 -(-3) ; 3 -1)    ⇔AB (4 ; 2) ;
AC (5  -(-3) ; - 5 -1) ⇔AC (8 ;  -6) .
модули этих векторов :
| AB | =√(4² +2²) =√20  = 2√5 ;
| AC | = √(8² +(-6)² ) =√(64 +36) = √100 =10 . 
По определению скалярного  произведения   двухх векторов :
 AB*AC =| AB |* | AC | *cos (AB^ AC) =2√5 *10cos∠A= 20√5cos∠A 
 С другой стороны скалярное произведение равно сумме произведений соответствующих координат векторов( эта теорема)
AB*AC = 4*8 +2*(-6) =32 -12 = 20.
Следовательно :  20√5cos∠A= 20 ⇒  cos∠A= 1/√5 .

ответ:   (√5) / 5 .
4,7(52 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ