М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Гиперборея
Гиперборея
19.10.2021 23:06 •  Геометрия

Найдите углы равнобедренного прямоугольного треугольника.

👇
Ответ:
kistoria
kistoria
19.10.2021
Так как треугольник прямоугольный , то один из углов равен 90 град., сумма двух других  углов равна 90 град ( Сумма углов треугольника равна 180 град ) . А так как треугольник равнобедренный , то при основании углы будут равны , то есть 90 :2 =45 град
Острые углы : по 45 град каждый
 ответ : 90град , 45 град , 45 град
4,6(75 оценок)
Открыть все ответы
Ответ:
Макоська
Макоська
19.10.2021

" Основой прямой призмы является равнобедренный треугольник с углом a при основании и радиусом вписанной окружности r. Диагональ боковой грани, проходящей через основание равнобедренного треугольника, наклонена к плоскости основания под углом y . Отметьте, какие из приведенных четырех утверждений правильные

1. Плоскость, проходящая через боковое ребро призмы и уентр круга, вписанного в основание, делит двугранный угол при боковом ребре призмы пополам

2. Боковое ребро призмы равна 2r*ctg*a/2*tgy

3. Одна из сторон основания призмы равна r*ctg*a/2

4. Один из двугранных углов при боковом ребре призмы равна a"

Объяснение:

1) Т.к. центр вписанной окружности лежит в точке пересечения биссектрис, то плоскостью, проходящей через боковое ребро призмы и центр круга, вписанного в основание, будет плоскость АКК₁А₁ , где  АК, А₁К₁-биссектрисы нижнего и верхнего оснований.

Поэтому 1 утверждение верное.

2) Боковое ребро найдем из ΔАСС₁ -прямоугольного :  СС₁=АС*tgy.

АС найдем из ΔАОН  :

                    ΔАВС-равнобедренный. В равнобедренном    

                    треугольнике биссектриса ВН является высотой и    

                    медианой .АК-биссектриса, значит ∠ОАН=α/2 .

                   АН= r /(tgα/2 )  , 2АН=АС= =2r*ctg α/2  .

Получаем    СС₁=2r*ctg α/2  *tgy.      

Поэтому 2 утверждение верное.      

3) 3 утверждение неверное , т.к. в п 2 найдена сторона основания АС=2r*ctg α/2   . а боковая сторона будет искаться через косинус или синус ΔАВН.

4)4 утверждение верное . Это двугранный угол , например САА₁В, т.к

АА₁⊥АС и АА₁⊥АВ и ∠ВАС=α


Основой прямой призмы является равнобедренный треугольник с углом a при основании и радиусом вписанн
4,5(61 оценок)
Ответ:
Rian1338
Rian1338
19.10.2021

1. S =  25,5 дм².

2. Cosα = 0,96.

Объяснение:

1. Построим сечение. Для этого проведем из точки О (пересечение диагоналей основания пирамиды - прямоугольника) луч, параллельно боковому ребру AS и на пересечении этого луча с боковым ребром CS обозначим точку Р.  Соединив точки В и D с точкой Р, получим треугольник BPD -- сечение пирамиды, проходящее через диагональ BD параллельно боковому ребру AS (так как луч ОР лежит в плоскости сечения и параллелен ребру AS).

Диагонали прямоугольника равны и точкой пересечения делятся пополам.

По Пифагору АС = BD = √(6²+8²) = 10 дм.  ОС = АО = BO = OD = 5 дм.

Треугольники ASC и OPC подобны (OP║AS) c коэффициентом подобия k=OC/AC = 1/2. =>  PC = SC/2.

Опустим из точки Р перпендикуляр РН.

Треугольники OSC и HPC подобны (PH║OS)  c коэффициентом подобия k=PC/SC = 1/2.  =>  PH  = SO/2,  НС = ОС/2.

Проведем из точки С перпендикуляр СТ к диагонали BD.  Это высота прямоугольного треугольника BCD, проведенная из прямого угла и по ее свойству CТ = BC*CD/BD =  8*6/10 = 4,8дм.

Проведем из точки Н прямую HQ, параллельно СТ. Тогда HQ⊥BD и по теореме о трех перпендикулярах PQ⊥BD и является высотой треугольника BPD.

Треугольники OCТ и OHQ подобны (HQ║CT) c коэффициентом подобия k=PC/SC = 1/2.  =>  HQ  = CT/2 = 4,8/2 = 2,4 дм.

По Пифагору PQ = √(HQ²+PH²) = √(2,4²+4,5²) = √26,01 = 5,1 дм.

Площадь сечения равна S = (1/2)*10*5,1 = 25,5 дм².

2. Определение: Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек. АВ1 и СD1 скрещивающиеся прямые по определению.

Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся.

Проведем диагональ А1В грани АА1В1В. A1B параллельна СD1 как соответствующие диагонали противоположных граней параллелепипеда. АВ1 и А1В - скрещивающиеся прямые. Следовательно, искомый угол - это угол между прямыми АВ1 и А1В. Боковая грань АА1В1В - прямоугольникб диагонали которого пересекаются в точке О и этой точкой делятся пополам. Диагонали равны между собой и по Пифагору равны √(АА1²+АВ²) = √(6²+8²) = 10 ед. Тогда АО = А1О = 5 ед.  АА1 = 6 ед. (дано).

Найдем косинус этого угла по теореме косинусов:

Cosα = (AO²+A1O² - AA1²)/(2*AO*AO) = (5²+5²-6²)/(2*25) = 14/50 = 0,28.

Тогда по известной формуле

Sinα = √(1 - Cos²α) =  √(0,9216) = 0,96.


Основанием пирамиды, высота которой равна 9 дм, а боковые ребра равны друг другу, является прямоугол
4,8(78 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ