на гипотенузе ab прямоугольного треугольника abc взята точка e, а внутри треугольника точка d. em перпендикулярно ac, am=cm, угол b=45 градусов, угол cda=90 градусов, угол dca=60 градусов. доказать, что em=dc.
Пусть АМ = СМ = а, тогда АС = 2а. Если угол В = 45гр, то поскольку ΔАВС прямоугольный, то второй уострый угол его угол А = 45гр. Тогда ΔАВС равнобедренный и ВС = АС = 2а. Поскольку АМ = СМ, а ЕМ перпендикулярно АС, то ЕМ параллельно ВС и ЕМ - средняя линия ΔАВС и ЕМ = 0,5ВС = а В ΔАСД угол Д прямой, АС - гипотенуза, а угол АСД = 60гр. Следовательно угол САД = 30гр. А катет СД, лежащий против угла в 30 гр., равен половине гипотенузы АС, т.е. СД = АС : 2 = а Таким образом ЕМ = а и СД = а, т.е. ЕМ = СД, что и требовалось доказать.
1. Свойство касательных к окружности, проведенной из одной точки: отрезки касательных равны. х-радиус вписанной окружности (см. рисунок в приложении) Учитывая, что периметр равен 54, составляем уравнение: х+х+х+х+3+3+12+12=54 4х+30=54 4х=24 х=6
2. Из условия: ∠С=х ∠А=4х ∠В=4х-58°
Так как четырехугольник вписан в окружность, то ∠А+∠С=180° ∠В+∠Д=180°
4х+х=180° 5х=180° х=36°
Тогда ∠С=36° ∠А=4х=4·36°=144° ∠В=4х-58°=144°-58°=86°
Пусть в параллелограмме ABCD E - середина AB, F - середина CD. В четырехугольнике AEFD стороны AE и FD равны и параллельны (равны половинам сторон AB и CD, которые также параллельны), значит, это параллелограмм и другая пара сторон также равна между собой. Таким образом, AD=EF. Так как в ABCD три стороны равны, то равны какие-то две соседние стороны, откуда следует, что все стороны параллелограмма равны, и любая из них равна четверти периметра. Так как отрезок EF также равен стороне, он также равен четверти периметра ABCD, что и требовалось.
Если угол В = 45гр, то поскольку ΔАВС прямоугольный, то второй уострый угол его угол А = 45гр. Тогда ΔАВС равнобедренный и ВС = АС = 2а.
Поскольку АМ = СМ, а ЕМ перпендикулярно АС, то ЕМ параллельно ВС и ЕМ - средняя линия ΔАВС и ЕМ = 0,5ВС = а
В ΔАСД угол Д прямой, АС - гипотенуза, а угол АСД = 60гр. Следовательно угол САД = 30гр. А катет СД, лежащий против угла в 30 гр., равен половине гипотенузы АС, т.е. СД = АС : 2 = а
Таким образом ЕМ = а и СД = а, т.е. ЕМ = СД, что и требовалось доказать.