12 см
Объяснение:
1) Острый угол, составляющий 2/3 прямого угла, равен:
90 · 2/3 = 60°.
2) Второй острый угол прямоугольного треугольника равен:
180 - 90 - 60 = 30°.
3) Меньший катет лежит против меньшего угла, то есть против угла 30°.
Катет, лежащий против угла 30°, равен половине гипотенузы.
Пусть х - меньший катет прямоугольного треугольника, тогда гипотенуза равна 2х. Составим уравнение и найдём х:
х + 2х = 18
3х = 18
х = 18 : 3 = 6 см - это длина меньшего катета.
4) Находим длину гипотенузы:
6 · 2 = 12 см
ответ: 12 см
1) Расстояние от точки до прямой измеряется длиной отрезка, проведенного перпендикулярно между ними. FH ⊥ЕD.
∠Н=∠C=90°
Искомое расстояние - длина отезка FH.
Т.к. ЕF биссектриса, в прямоугольных треугольниках ∆ СЕF и ∆ HЕF
∠СЕF=∠HEF, EF- общая гипотенуза.
Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.
∆ СЕF=∆ HЕF Сходственные элементы равных треугольников равны. =>
FH=FC=13 см.
2) Строим острый угол В. Из вершины угла проводим окружность радиусом равным катету, и отмечаем точку пересечения А. Так как треугольник — прямоугольный, то восстанавливаем перпендикуляр из точки А. Полученная точка пересечения С. Соединяем попарно вершины треугольника. Искомый треугольник построен. (2 картинка)
3) задание на картинке
Объяснение:
O - центр описанной окружности около треугольника АВС
L - центр окружности, вписанной в треугольник АВС
BH - высота
Дано:
АВС - равнобедренный треугольник (АВ=ВС)
ВН - высота, ВН = 9
АС = 24
Найти: R и r
Решение:
BH - это высота, биссектриса и медиана, т.к. В равнобедренном треугольнике медиана, биссектриса и высота, проведенные к основанию, совпадают.
AH=HC=12
По Теореме Пифагора:
Есть такое свойство:
Если в многоугольник можно вписать окружность, то его площадь равна произведению полупериметра многоугольника на радиус этой окружности:
S = pr
P = 54, p = 27
S = 27r
Есть еще одна формула:
S = 108
108 = 27r
r = 4
Найдем R:
Есть еще одна формула для нахождения площади треугольника:
S = 108
108 =
432R = 5400
R = 12,5
ответ: r = 4, R = 12, 5