Рассмотрим треугольник PET. он прямоуголный (угол PET 90). тогда угол PTE равен 45 (из суммы углов треугольника =180) отсюда следует, что PE=ET=7. тогда площадь равна S=PE*MT=7*11=77.
Биссектриса разделяет прямоугольный треугольник на два треугольника. Под углом 80 градусов означает, что угол, совместный с данным по развернутой гипотенузе равен 180-80=100. Больший угол прямоугольного треугольник - 90 градусов. значит углы, на которые разделила биссектриса равны 90/2=45. значит у нас известны по два угла каждого треугольника . Из этого мы можем вычислить остальные два угла, которые и являются неизвестными углами прямоугольного треугольника. 180-80-45=55 градусов и 180-100-45=35 градусов
В правильной четырехугольной пирамиде MABCD, все ребра которой равны 1,боковые рёбра - равносторонние треугольники. Их высота - это апофема А. Она равна 1*cos 30° = √3/2. Проведём осевое сечение перпендикулярно рёбрам основания ВС и АД. В сечении имеем равнобедренный треугольник с боковыми сторонами по (√3/2) и с основанием, равным диагонали d основания пирамиды. d = a√2 = 1*√2 = √2. По теореме косинусов: cos M = ((√3/2)² + (√3/2)² - (√2)²)/(2*(√3/2)*(√3/2)) = 1/3. Угол М (а он и есть искомый угол плоскостями MAD и MBC) равен: <M = arc cos(1/3) = 1,230959 радиан = 70,52878°.
тогда площадь равна S=PE*MT=7*11=77.