Скажите : как решать примеры sin и cos 7-9 класса, объясните как именно их решать потому что я в 9 классе и сейчас экзамены скоро а я не знаю как решать , объясните как решать и можно пример какой
Для начала нам нужно найти полный оборот (360 градусов). К примеру ctg1125° подойдёт больше 3 оборота 1080 г, к син 4 оборота 1440 г, а кос 2 оборота, только у кос мы отнимаем 90 г, а к син и скт прибавляем. К син 30 г, а к кнг 45 г.
bc=b1c1, и am, a1m1 - медианы, то bm=cm=b1m1=c1m1. Рассмотрим треугольники abm и a1b1m1. Они равны по трем сторонам: - ab=a1b1 по условию; - am=a1m1 по условию; - bm=b1m1 как только что доказано. У равных треугольников abm и a1b1m1 равны соответственные углы amb и a1m1b1. Значит, углы amc и a1m1c1, равные 180-<amb и 180-<a1m1b1, также равны между собой. Треугольники amc и a1m1c1 будут равны по двум сторонам и углу между ними: - am=a1m1 по условию; - сm=c1m1 как было показано выше; - углы amc и a1m1c1 равны как доказано выше. У равных треугольников amc и a1m1c1 равны соответственные стороны ac и a1c1. Таким образом, треугольники abc и a1b1c1 получаются равными по трем сторонам.
Треугольная пирамида, все боковые ребра равны, => высота пирамиды проектируется в центр описанной около треугольника (основания пирамиды) окружности. радиус описанной около произвольного треугольника окружности вычисляется по формуле: AC=1, BC=2, <C=60°. AB=? по теореме косинусов: AB²=AC²+BC²-2*AC*Bc*cos<C AB²=1²+2²-2*1*2*cos60° AB²=3, AB=√3
прямоугольный треугольник: гипотенуза с=√13 - боковое ребро пирамиды катет а=√3 радиус описанной около треугольника окружности катет Н -высота пирамиды, найти по теореме Пифагора: c²=a²+H², H²=(√13)²-(√3)². H=√10