1. На прямой а отложим отрезок KN, равный данному отрезку АВ. 2. Построим ∠TKN = ∠PNN' = ∠CDE. Для этого проведем дугу произвольного одинакового радиуса с центрами в точках D, К и N. Точки пересечения дуг с прямой а обозначим K' и N' (эти точки находятся по разные стороны от точки N). Измерим расстояние C'E' и таким радиусом проведем окружности с центрами в точках K' и N'. Через точки пересечения этих окружностей с ранее построенными дугами проведем лучи КТ и NP. 3. На лучах КТ и NP отложим отрезки KL и NM соответственно, равные данному отрезу АВ. 4. Соединим точки L и М. KLMN - искомый ромб.
Доказательство: KL║NM так как соответственные углы LKK' и MNN' равны по построению. KL = NM по построению, значит KLMN - параллелограмм. Смежные стороны его равны, значит это ромб.
Задача имеет единственное решение, так как ромбы с равными сторонами и углом - равны.
Провели высоту и получился прямоугольный треугольник. Гипотенуза 17, один катет 16:2= 8, другой катет х. Высота в равнобедренном треугольнике является и медианой.Значит, она делит сторону пополам,на которую она опущена. поэтому 16:2=8
По теореме Пифагора 17² = х² +8² 289 = х² +64 289-64 = х² 225 = х² х² = 225 х = √ 225 х = 15
АС=√АВ²-СВ²=√21²-³(6√10)²=√441-36*10=√441-360=√81=9