Сума внутрішніх кутів чотирикутника дорівнює 360°. Нехай міра меншого кута дорівнює х°, тоді інші кути чотирикутника мають міру 2х°, Зх" та 4х°. Розв'язуємо рівняння х + 2х + Зх + 4х = 360; 10х = 360; х - 36. Отже, кути чотирикутника мають міру 36°, 72", 108° та 144°;
а) Якщо менший кут чотирикутника має міру х°, то, згідно умові, інші кути мають міру 2х", 2х° та 13зг°. Отримуємо рівняння: х + 2х + 2х + 13х = 360; 18х = 360; х = 20. Отже, кути чотирикутника мають міру 20°, 40°, 40° та 260°. Оскільки найбільший кут чотирикутника більший від розгорнутого, то даний чотирикутник — не опуклий.
Ромб АВСД, АС=6, ВД=8, диагонали ромба при пересечении делятся пополам и пересекаются под углом 90, диагонали делят ромб на 4 равных прямоугольных треугольника, АВ=ВС=СД=АД=корень(АО в квадрате+ВО в квадрате)=корень(9+16)=5, проводим из точки О перпендикуляры на АВ - ОМ, на ВС-ОН, на СД-ОТ, на АД-ОЕ, соединяем их с точкой К, если треугольники в роьбе равны , то и высоты тоже равны, ОМ=ОН=ОС=ОЕ, треугольникОМК=ОНК=ОТК=ОЕК как прямоугольные треугольники по двум катетам, ОК-общий , вторые см. ранеее, значит МК=НК=ТК=ЕК, АМ =АО в квадрате/АВ=9/5, ВМ=ВО в квадрате/АВ=16/5, ОМ=корень(АМ*ВМ)=корень(9/5 * 16/5)=12/5=2,4, треугольникОМК прямоугольный, МК=корень(ОМ в квадрате+ОК в квадрате)=корень(5,76+20,25)=5,1
Объяснение:
Сума внутрішніх кутів чотирикутника дорівнює 360°. Нехай міра меншого кута дорівнює х°, тоді інші кути чотирикутника мають міру 2х°, Зх" та 4х°. Розв'язуємо рівняння х + 2х + Зх + 4х = 360; 10х = 360; х - 36. Отже, кути чотирикутника мають міру 36°, 72", 108° та 144°;
а) Якщо менший кут чотирикутника має міру х°, то, згідно умові, інші кути мають міру 2х", 2х° та 13зг°. Отримуємо рівняння: х + 2х + 2х + 13х = 360; 18х = 360; х = 20. Отже, кути чотирикутника мають міру 20°, 40°, 40° та 260°. Оскільки найбільший кут чотирикутника більший від розгорнутого, то даний чотирикутник — не опуклий.