1 из трех точек, не лежащих на одной прямой, и трёх отрезков, их соединяющих
2 отрезок, соединяющий эту вершину с серединой противолежащей стороны
3 только три медианы
4 сумма длин всех его сторон
5 высота, проведённая к основанию является биссектрисой и медианой
6 перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону
7 все его стороны равны
8 Медиана равнобедренного треугольника, проведённая к его боковой стороне, является биссектрисой и высотой
9 всегда верно
Объяснение:
1)Чтобы понять существует ли треугольник,надо:
Необходимым и достаточным условием существования треугольника является выполнение следующих неравенств:
a+b>c, a+c>b, b+c>a, (a>0, b>0, c>0),
где a, b и с - длины сторон треугольника.
Другими словами, треугольник существует тогда и только тогда, когда сумма любых двух его сторон больше третьей стороны.
2)Х+2х+6х = 180 (сумма углов в треуг = 180*)
9х=180, х=20
больший угол 6 умн 20*=120*
3)Сумма углов в треугольнике равна 180*. Углы в равнобедренном треугольнике при основании равны. значит: 180-70=110=> 110/2=55*
ответ: угол при основании равен 55*
4)Обозначим половину угла отсекаемого биссектрисой за х
тогда угол при основании С будет 2х
исходя из свойств углов тре-ка получаем
2х+2х+64=180
4х=180-64
4х=116
х=116:4
х=29гр - угол АСМ
29х2=58 гр-угол МАС
180-(58+29)=93 гр-угол АМС
Подробнее - на -
Объяснение:
Проведём ЕР и DF ;
т.к. М - середина => ЕМ = МF и PM = MD
∆ЕРD = ∆MDF по 1 признаку ( ЕМ = МF и PM = MD по док. выше и <EMD = <DMF - как вертикальные ) => EP = DF , что и требовалось доказать