М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lizakaraseva0
lizakaraseva0
10.10.2021 15:09 •  Геометрия

Высота правильной треугольной пирамиды равна h, а двугранный угол при стороне основания равен 45 градусов. найти площадь поверхности пирамиды

👇
Ответ:
fhjanvmendwr
fhjanvmendwr
10.10.2021

Рассмотрим прямоугольный треугольник \tt SOK, в нём \tt \angle SKO=45а, значит \tt \angle OSK=90а-\angle SKO=90а-45а=45а, следовательно, треугольник \tt SOK - равнобедренный прямоугольный треугольник: \tt SO=OK=h


\tt OK- радиус вписанной окружности основания. Основанием правильной треугольной пирамиды является правильный треугольник \tt ABC

\tt r=OK=\dfrac{AC}{2\sqrt{3}} ~~\Rightarrow~~ AC=2r\sqrt{3} =2h\sqrt{3}


Площадь основания: \tt S_{oc_H}=\dfrac{AC^2\sqrt{3}}{4}=\dfrac{(2h\sqrt{3})^2\cdot \sqrt{3}}{4}=3h^2\sqrt{3} кв. ед.

\tt SK=\sqrt{SO^2+OK^2}=\sqrt{h^2+h^2}=h\sqrt{2} - апофема.

Площадь боковой поверхности:

\tt S_{bok}=\dfrac{1}{2}\cdot P_{oc_H}\cdot SK= \dfrac{1}{2}\cdot 3\cdot2h\sqrt{3} \cdot h\sqrt{2} =3h^2\sqrt{6} кв.ед.

Площадь полной поверхности:

\tt S=S_{oc_H}+S_{bok}=3h^2\sqrt{3}+3h^2\sqrt{6}=3h^2\sqrt{3}\left(1+\sqrt{2}\right)кв. ед.

ответ: \tt3h^2\sqrt{3}\left(1+\sqrt{2}\right) кв.ед..


Высота правильной треугольной пирамиды равна h, а двугранный угол при стороне основания равен 45 гра
4,7(43 оценок)
Ответ:
arturkill12309
arturkill12309
10.10.2021
ДАНО: SАВС - правильная треугольная пирамида ; SD = h ; линейный угол двугранного угла ABCS равен 45°.

НАЙТИ: S пол. пов. пирамиды 
______________________________

РЕШЕНИЕ:

1) Линейным углом двугранного угла называется угол, образованный лучами с вершиной на ребре, и при этом лучи лежат на гранях двугранного угла и перпендикулярны ребру.

В основании правильной треугольной пирамиды лежит правильный треугольник, то есть ∆ АВС – равносторонний 

В ∆ АВС опустим высоту АН на ВС
В равностороннем треугольнике высота является и медианой, и биссектрисой → ВН = СН

отрезок SD ( высота пирамиды ) перпендикулярен плоскости основания ∆ АВС
Если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой, лежащей в этой плоскости →
SD перпендикулярен АН
АН перпендикулярен ВС
Значит, SH перпендикулярен ВС по теореме о трёх перпендикулярах

Из этого следует, что угол SHА – линейный угол двугранного угла АВСS, то есть угол SHА = 45°

2) Рассмотрим ∆ SHD (угол SDH = 90°):
Сумма острых углов в прямоугольном треугольнике всегда равна 90°
угол HSD = 90° - 45° = 45°

Значит, ∆ SHD – прямоугольный и равнобедренный , SD = DH = h

По теореме Пифагора:
SH² = SD² + DH²
SH² = h² + h² = 2h²
SH = h√2

Как было сказано выше, высота, проведённая в равностороннем треугольнике, является и медианой, и биссектрисой
Медианы любого треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2 : 1 , считая от вершины
Следовательно, AD : DH = 2 : 1 →
AD = 2 × DH = 2h
AH = AD + DH = 2h + h = 3h

Сторона равностороннего треугольника вычисляется по формуле:

a = \frac{2 \sqrt{3} h}{3}

где а - сторона равностороннего треугольника, h - высота

BC = ( 2√3 × AH ) / 3 = ( 2√3 × 3h ) / 3 = 2√3h

S пол. пов. пирамиды = S осн. + S бок. пов.

В правильной треугольной пирамиде все боковые грани равны друг другу →

S пол. пов. пирамиды = S abc + 3 × S bcs 

Площадь равностороннего треугольника вычисляется по формуле:

s = \frac{ {a}^{2} \sqrt{3} }{4}

где а - сторона равностороннего треугольника

S пол. пов. пирамиды = 
= \frac{ {(2 \sqrt{3}h) }^{2} \sqrt{3} }{4} + 3 \times \frac{1}{2} \times 2 \sqrt{3} h \times h \sqrt{2} = \\ = 3 \sqrt{3} {h}^{2} + 3 \sqrt{6} {h}^{2} = 3 \sqrt{3} {h}^{2} (1 + \sqrt{2} )

ОТВЕТ: 3√3h² × ( 1 + √2 )
Высота правильной треугольной пирамиды равна h, а двугранный угол при стороне основания равен 45 гра
4,6(75 оценок)
Открыть все ответы
Ответ:
vadi96356
vadi96356
10.10.2021
Угол между плоскостью основания и противолежащей вершиной другого основания - это угол ОКС. Поскольку все ребра перпендикулярны основаниям, то треугольник КОС - прямоугольный с прямым углом С. И поскольку угол ОКС = 30 градусов, то катет ОС равен половине гипотенузы ОК как катет, что лежит против угла 30 градусов. ОК = 2СО = 6*2 = 12 см. Из теоремы Пифагора: CK^2 = OK^2 - OC^2, CK^2 = 12^2 - 6^2 = 144 - 36 = 108, CK = 6 корней из 6. Из правильного треугольника АВС: высота СК = 6 корней из 3, которая является также и медианой, поэтому АК = КВ = СВ/2. Из прямоугольного треугольника СКВ: угол СВК = 60 градусов как угол правильного треугольника. По теореме синусов: СК/sin(CBK) = CB/sin(CKB), CB = 12. Площадь треугольника равна 36 корней из 3 см^2. Объем призмы равен площади основания, умноженного на высоту: V = So*H = S(ABC)*OC = 108 корней из 3 см^3.

Сечение правильной треугольной призмы проходящее через сторону основания и противо лежащую вершину д
Сечение правильной треугольной призмы проходящее через сторону основания и противо лежащую вершину д
4,7(19 оценок)
Ответ:
zhigulovnik
zhigulovnik
10.10.2021
Вот такое нахальное решение. ну уж простите : )пусть катеты a и b, гипотенуза с. я строю квадрат со сторонами (a + b), и дальше обхожу все 4 стороны по часовой стрелке, откладывая   отрезок а от вершины.  (пояснение.построенный со стороной (a + b) с вершинами аbcd, а - "левая нижняя" вершина. от а вверх - вдоль ав, откладывается а, потом от в вправо - вдоль вс откладывается а, потом от с вниз, вдоль cd, откладывается а, и от d вдоль da откладывается а.)все эти точки соединяются.получился квадрат со стороной с, вписанный в квадрат со стороной (a+b).ясно, что центры этих квадратов . это автоматически доказывает то, что надо в .  (если не ясно, постройте там пару треугольников из диагоналей обоих квадратов и отрезков длины а и докажите их равенство.  на самом деле не надо ничего доказывать - эта фигура из двух квадратов переходит сама в себя при повороте вокруг центра большого квадрата на 90 градусов. поэтому центр "вписанного" квадрата совпадает с центром большого, то есть лежит на биссктрисе прямого угла большого квадрата. ну, и биссектрисе прямого угла исходного треугольника, само собой - это одно и то же. этих треугольников там даже четыре, а не один : ), можно любой выбрать за исходный.)
4,5(63 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ