М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
akinfijevsp058du
akinfijevsp058du
05.03.2023 06:51 •  Геометрия

Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 5. объем параллелепипеда равен 400. найдите высоту цилиндра

👇
Ответ:
Prostoy23
Prostoy23
05.03.2023
Параллелепипед описан около цилиндра, =>
1. высота цилиндра =высоте параллелепипеда
2. диаметр основания цилиндра=стороне основания параллелепипеда, в основании квадрат со стороной 10 (5*2=10)
Vпарал=Sосн*Н
400=10² *H
H=4
ответ: высота цилиндра =4
4,6(19 оценок)
Открыть все ответы
Ответ:
sofiafrog2004
sofiafrog2004
05.03.2023
Пусть даны два прямоугольных треугольника АВС и А1В1С1, у которых <А=<А1=90°, <C=<C1 и высоты АН и А1Н1 равны.
Тогда и <B=<B1, так как сумма острых углов прямоугольного треугольника равна 90°, то есть <B=90-С, а <D1=90-С1.
Высоты АН и А1Н1 делят треугольники АВС и А1В1С1 на подобные.
Значит <BAH=<C, a <CAH=<B. Точно так же <B1A1H1=<C1,
a <C1A1H1=<B1. Но <C=<C1 a <B=<B1.
Значит <BAH=<B1A1H1, a <CAH=<C1A1H1.
Тогда прямоугольные треугольники АВН и А1В1Н1 равны по катету (АН=А1Н1 -дано)  и прилежащему острому углу (<BAH=<B1A1H1). Значит ВН=В1Н1.
Прямоугольные треугольники АСН и А1С1Н1 равны по катету (АН=А1Н1 -дано)  и прилежащему острому углу (<СAH=<С1A1H1). Значит СН=С1Н1.
ВС=ВН+СН, В1С1=В1Н1+С1Н1. Отсюда ВС=В1С1.
Гипотенузы треугольников ВС и В1С1 равны, острые углы их тоже равны, значит треугольники АВС и А1В1С1 равны по равенству гипотенузы и острому углу (третий признак).
Что и требовалось доказать.

Докажите равенство прямоугольных треугольников по острому углу и высоте, опущенной на гипотенузу
4,6(85 оценок)
Ответ:
marimuravskap08uv0
marimuravskap08uv0
05.03.2023
Пусть даны два прямоугольных треугольника АВС и А1В1С1, у которых <А=<А1=90°, <C=<C1 и высоты АН и А1Н1 равны.
Тогда и <B=<B1, так как сумма острых углов прямоугольного треугольника равна 90°, то есть <B=90-С, а <D1=90-С1.
Высоты АН и А1Н1 делят треугольники АВС и А1В1С1 на подобные.
Значит <BAH=<C, a <CAH=<B. Точно так же <B1A1H1=<C1,
a <C1A1H1=<B1. Но <C=<C1 a <B=<B1.
Значит <BAH=<B1A1H1, a <CAH=<C1A1H1.
Тогда прямоугольные треугольники АВН и А1В1Н1 равны по катету (АН=А1Н1 -дано)  и прилежащему острому углу (<BAH=<B1A1H1). Значит ВН=В1Н1.
Прямоугольные треугольники АСН и А1С1Н1 равны по катету (АН=А1Н1 -дано)  и прилежащему острому углу (<СAH=<С1A1H1). Значит СН=С1Н1.
ВС=ВН+СН, В1С1=В1Н1+С1Н1. Отсюда ВС=В1С1.
Гипотенузы треугольников ВС и В1С1 равны, острые углы их тоже равны, значит треугольники АВС и А1В1С1 равны по равенству гипотенузы и острому углу (третий признак).
Что и требовалось доказать.

Докажите равенство прямоугольных треугольников по острому углу и высоте, опущенной на гипотенузу
4,4(64 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ