Длина медианы определяется по формуле: . Подставив значения сторон, получаем длины медиан: a b c 5 6 8 ма мв мс 6.61438 5.95819 3.80789. Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении 2:1, считая от вершины. Деление медиан точкой пересечения: ма мв мс АО ОД ВО ОЕ СО ОК 4.40959 2.20479 3.972125 1.98606 2.5386 1.2693.
Как известно, площадь треугольника можно вычислить в данном случае по формуле S=AB*h/2, где h - высота, проведенная к АВ. (1) Можно вычислить и по-другому. S=BC*H/2, где H - высота, проведенная к ВС. H надо найти. (2) Теперь приравняем правые части формул (1) и (2) AB*h/2=BC*H/2 Умножим обе части на 2, получимAB*h=BC*H (3)По условию задачи АВ=16 см, ВС=22 см, h=11 см. Подставим все это в формулу (3)16*11=22*НСократим обе части на 1116=2*НСократим обе части на 2Н=8.ответ: Н=8 см- высота, проведенная к стороне ВС