(Гипотенуза-диаметр описанной около прям тр-ка окр-сти, но ,если не понятно , то далее идет объяснение) Радиус описанной около прям тр-ка окружности=5 Радиус=медиане, проведенной из вершины прямого угла Так как медиана делит гипотенузу на два равных отрезка и равна радиусу , т.е. 5 , то гипотенуза=5+5=10
Гипотенуза=10, первый катет=6 => второй катет=8 ( Пифагорова тройка) (Если не знаешь эту тройку , то можно найти по теореме Пифагора: 10^2=6^2+х^2; х^2=100-36=64 х=8)
Рассмотрим плоскость α и точку А, которая лежит вне этой плоскости (рис. 1). Как известно, из точки А можно провести единственную прямую АH перпендикулярную плоскости α. Проведем прямую АН перпендикулярно плоскости α, . В доказанной прямой и обратной теореме точка М (основание наклонной) лежала на прямой , лежащей в плоскости α. Давайте проведем в плоскости α другую прямую а, которая параллельна . Тогда углы между прямыми a, АМ, НМ не изменятся. И из перпендикулярности прямой а и прямой АМ будет вытекать перпендикулярность прямой а и прямой НМ и наоборот.
Рис. 5. 8. Задача 1 Из некоторой точки проведены к данной плоскости перпендикуляр и наклонная, угол между которыми равен . а) Найти наклонную и ее проекцию на данную плоскость, если перпендикуляр равен d. б) Найти перпендикуляр и проекцию наклонной, если наклонная равна m.
Рис. 6. а) Дано:
Найти:
Решение: Итак, имеем плоскость α, точку А, (рис. 6). Вспомним, перпендикуляром называется отрезок АН, который проведен из точки А к плоскости , АМ – наклонная. Мы имеем треугольник АНМ. Этот треугольник прямоугольный. Для того чтобы найти гипотенузу АМ, нужно катет АН разделить на косинус прилежащего угла НАМ.
Две точки, которые лежат на кругах разных основ цилиндра соединены отрезком. Найти его длину, если радиус равен 10 см, высота - 17 см, расстояние от оси к отрезку 4 см ------ Уточним, что данные две точки, которые лежат на кругах разных основ цилиндра, расположены на окружностях, ограничивающих эти круги, а расстояние от оси к отрезку 4 см - это расстояние от оси цилиндра до отрезка 4 см.
Сделаем рисунок, назовем данный отрезок АВ. АВ и ось цилиндра ОО1 - скрещивающиеся прямые, т.к. не параллельны и не пересекаются. Расстояние между скрещиваюимися прямыми - это расстояние между одной из этих прямых и параллельной ей плоскостью, проходящей через другую прямую. Проведем параллельно ОО1 плоскость, содержащую АВ. Для этого из А и В проведем к противоположным основаниям перпендикуляры АС и ВД. Соединим все четыре точки. АС=ВД= высоте цилиндра =17 см АДВС - прямоугольник, т.к. основания цилиндра параллельны и углы ДВС, АСВ=90º по построению.. АВ лежит в получившейся плоскости как диагональ этого прямоугольника. Расстояние от прямой ОО1 до параллельной ей плоскости измеряют перпендикуляром. Проведем из центра О перпендикуляр к хорде ВС. ВН=НС по свойству радиуса и хорды. Из прямоугольного треугольника ОНВ найдем длину НВ по т.Пифагора: ВН²=ВО²-ОН²=100-16=84 ВН=√84 BC=2 BH=2√84 Из прямоугольного треугольника АВС по т. Пифагора найдем АВ: АВ²=ВС²+АС²=4*84+289=625 АВ=√625=25 см
Радиус описанной около прям тр-ка окружности=5
Радиус=медиане, проведенной из вершины прямого угла
Так как медиана делит гипотенузу на два равных отрезка и равна радиусу , т.е. 5 , то гипотенуза=5+5=10
Гипотенуза=10, первый катет=6 => второй катет=8 ( Пифагорова тройка)
(Если не знаешь эту тройку , то можно найти по теореме Пифагора: 10^2=6^2+х^2; х^2=100-36=64
х=8)