Abc=bac=(180-120)/2=30° проведем высоту CH из угла С, мы получим два равных прямоугольных треугольника ac=√25=5 cah=30° hca=60° напротив угла в 30° лежит катки в два раза меньше гипотенузы, поэтому можно сделать вывод, что ch=2.5 по теореме Пифагора ah=√(ac²-ch²)=√25-6.25=5√3/2 ab=ah+hb=2*ah=5√3
В треугольнике АВО все углы равны по 60 градусов,т.к треугольник равносторониий угол АОВ является центральным углом и равен 60 градусам,а угол АСВ является вписанным,он равен половине соответствующего центрального угла и равен 30 градусовТ.к. треугольник ABC равносторонний, то все углы равны 60 градусов===>угол АOВ=60Т.к. угол АОВ центральный, то величина дуги АВ тоже равна 60.Угол АСВ вписанный, и опирается на дугу АВ. Т.к. он вписанный то угол будет равен половине величины дуги, тоесть уголАОВ=60/2=30 Или если просто из правила. Величина вписанного угла равна половине центрального угла опирающего на эту дугу. уголВСА=уголВОА/
В треугольнике АВО все углы равны по 60 градусов,т.к треугольник равносторониий угол АОВ является центральным углом и равен 60 градусам,а угол АСВ является вписанным,он равен половине соответствующего центрального угла и равен 30 градусовТ.к. треугольник ABC равносторонний, то все углы равны 60 градусов===>угол АOВ=60Т.к. угол АОВ центральный, то величина дуги АВ тоже равна 60.Угол АСВ вписанный, и опирается на дугу АВ. Т.к. он вписанный то угол будет равен половине величины дуги, тоесть уголАОВ=60/2=30 Или если просто из правила. Величина вписанного угла равна половине центрального угла опирающего на эту дугу. уголВСА=уголВОА/
проведем высоту CH из угла С, мы получим два равных прямоугольных треугольника
ac=√25=5
cah=30°
hca=60°
напротив угла в 30° лежит катки в два раза меньше гипотенузы, поэтому можно сделать вывод, что ch=2.5
по теореме Пифагора
ah=√(ac²-ch²)=√25-6.25=5√3/2
ab=ah+hb=2*ah=5√3
возможно так..