М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ovveall
ovveall
20.02.2022 02:27 •  Геометрия

Втреугольнике abc проведены биссектрисы ad и ce.найдите длину отрезка de.если ас=6,ае=2,сd=3.

👇
Ответ:
чо2
чо2
20.02.2022
EB = z; BD = q; 
BD/AB = DC/AC
q/(2 + x) = 3/6 
z/(y + 3) = 2/6 
z= 8/5; q = 9/5 
∠B = 90° (т.к. AB² + BC² = AC²) 
ED = √(q² + z²) = (√145)/5
4,6(99 оценок)
Открыть все ответы
Ответ:
Andezia
Andezia
20.02.2022
РЕШЕНИЕ
1. Найти расстояние от S до АС.
Рисунок к задаче в приложении. 
1) Треугольник АВС - равнобедренный. BD - и медиана и высота.
CD = AC /2 = 6/2 = 3 см
2) Вспоминаем праУчителя - Пифагора и его треугольник с отношениями сторон - 3:4:5.
3) Без формул, а только силой разума находим:
3 : BD : 5 и BD = 4 см
4) И также расстояние SD из треугольника BDS.
3 :4 : SD и SD = 5 см - расстояние - ОТВЕТ
2. 
Рисунок к задаче в приложении.
Находим третью сторону - гипотенузу ВС.
ВС² =  (√3)² + (√6)² = 3+6 = 9
ВС = √9 = 3 см - гипотенуза.
Высота AD  по формуле
h_{a} = \frac{2 \sqrt{p(p-a)(p-b)(p-c)}}{a} = \sqrt{2}
где p =(a+b+c)/2 = 3.591, p-a = 1.141, p-b = 1.859, p-c = 0.591
Находим расстояние DS по теореме пифагора
DS² = 2² + (√2)²   = 6
DS = √6 - расстояние - ОТВЕТ

1) отрезок вs перпендикулярен плоскости треугольника авс и имеет длину 3 см. найдите расстояние от т
1) отрезок вs перпендикулярен плоскости треугольника авс и имеет длину 3 см. найдите расстояние от т
4,4(65 оценок)
Ответ:
yulik9
yulik9
20.02.2022

ответ:

якласс лого

1. теорема синусов, теорема косинусов

теория:

теорема синусов

теорему пифагора и тригонометрические функции острого угла можно использовать для вычисления элементов только в прямоугольном треугольнике.

для нахождения элементов в произвольном треугольнике используется теорема синусов или теорема косинусов.

4cepure.jpg

теорема синусов

стороны треугольника пропорциональны синусам противолежащих углов:

asina=bsinb=csinc

(в решении одновременно пишутся две части, они образуют пропорцию).

теорема синусов используется для вычисления:

неизвестных сторон треугольника, если даны два угла и одна сторона;

неизвестных углов треугольника, если даны две стороны и один прилежащий угол.

так как один из углов треугольника может быть тупым, значение синуса тупого угла находится по формуле sin(180°−α)=sinα .

наиболее часто используемые тупые углы:

sin120°=sin(180°−60°)=sin60°=3√2; sin150°=sin(180°−30°)=sin30°=12; sin135°=sin(180°−45°)=sin45°=2√2.

радиус описанной окружности

треуг2.jpg

asina=bsinb=csinc=2r , где r — радиус описанной окружности.

выразив радиус, получаем r=a2sina , или r=b2sinb , или r=c2sinc .

теорема косинусов

для вычисления элементов прямоугольного треугольника достаточно 2 данных величин (две стороны или сторона и угол).

для вычисления элементов произвольного треугольника необходимо хотя бы 3 данных величины.

4cepure.jpg

теорема косинусов

квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

a2=b2+c2−2⋅b⋅c⋅cosa .

также теорема исполняется для любой стороны треугольника:

b2=a2+c2−2⋅a⋅c⋅cosb ;

c2=a2+b2−2⋅a⋅b⋅cosc .

теорема косинусов используется для вычисления:

неизвестной стороны треугольника, если даны две стороны и угол между ними;

вычисления косинуса неизвестного угла треугольника, если даны все стороны треугольника.

значение косинуса тупого угла находится по формуле cos(180°−α)=−cosα .

наиболее часто используемые тупые углы:

cos120°=cos(180°−60°)=−cos60°=−12; cos150°=cos(180°−30°)=−cos30°=−3√2; cos135°=cos(180°−45°)=−cos45°=−2√2.

если необходимо найти приблизительное значение синуса или косинуса другого угла или вычислить угол по найденному синусу или косинусу, то используется таблица или калькулятор.

вернуться в тему

следующее

copyright © 2019 якласс

контакты пользовательское соглашение

4,5(99 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ