Вравностороннем треугольнике авс из середины d стороны ав проведен пепендикуляр дм на сторону ас, причем м€ ас. найдите периметр треугольника авс, если ам= 7см.
Т.к. треугольник ABC равносторонний, то все его углы равны по 60 градусов. Рассмотрим прямоугольный треугольник ADM: угол А=60 град. (тк ABC равносторонний), угол DMA=90 град (тк DM перпендикуляр), следовательно угол D=180-(60+90)=30 град (сумма углов в тр-ке равна 180 град). Т.к. в прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы, то значит катет AD будет равен 14 см. Если D cередина стороны АВ, то АВ=14*2=28 см. В равностороннем тр-ке все стороны равны, следовательно АВ=АС=ВС=28 см. Периметр треугольника АВС=28+28+28=28*3=84 см.
Задача 1 в прямоугольнике противоположные стороны равны и все углы = 90 градусов. если ВЕ - биссектриса то уголы при биссектрисе = по 45 градусов.если рассмотреть треугольнык созданный при биссектрисы то получается что углы равны 90, 45, и 45 (90-45), значит этот треугольник равнобедреный , поэтому стороны треугольника будут равны по 17 см . если АЕ=ЕД, то =38 38+39=76 17+17=34 34+76=110 ответ периметр 110 см
Задача 2
если треугольник АВД - прямоугольный а один из углов = 60 градусов то другой = 30 градусов.по теореме сторона лежащая напротив угла = 30 градусов равна полоаине гипотинузы если катет АВ = 12 см то ВД= 24 см в прямоугольнике диагонали = АС = 24 см.
Задача 3 В прямоугольнике диагонали равны и если диагонали разделить на пополам они все будут равны из этого следует что треугольник ВАО - равнобедренный в равнобедренном треугольнике углы при основании равны поэтому угол ОВА или ОАВ =(180-40)/2=70 градусов
Пусть данная пирамида будет МАВСД. Ищем угол МВО. МО- высота пирамиды, ее основание О совпадет с точной пересечения диагоналей АВСД. Т,к. АВСД - квадрат, ВО =ВД/2 Все ребра пирамиды равны. Следовательно, в её основании квадрат, а боковые грани - правильные треугольники. Пусть ребро пирамиды равно а. Тогда диагональ АВСД равна а√2, а ВО равно (а√2):2 Косинус угла МВО равен ВО:ВМ cos МВО= [ (а√2):2 ]:а=(√2):2 - это косинус угла 45° Искомый угол между боковым ребром и плоскостью основания пирамиды равен 45°