Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.
В условии ошибка. Если сторона квадрата 24, то его диагональ 24√2 ≈ 34. Тогда в треугольнике ASC сторона АС больше суммы двух других сторон: 34 > 13 + 13, т.е. треугольник с такими сторонами не существует.
Встречается такая же задача с другими данными:
Стороны основания правильной четырехугольной пирамиды равны 10, боковые ребра равны 13. Найдите площадь поверхности этой пирамиды.
Пирамида правильная, значит в основании лежит квадрат, а боковые грани - равные равнобедренные треугольники.
Проведем SH⊥CD. Тогда CH = HD (треугольник SCD равнобедренный).
CH = HD = 1/2 CD = 5.
ΔSCH: ∠SHC = 90°, по теореме Пифагора:
SH = √(SC² - CH²) = √(169 - 25) = √144 = 12
Sпов = Sосн + Sбок
Sосн = AD² = 10² = 100
Sбок = 1/2 Pосн · SH = 1/2 · 10 · 4 · 12 = 240
Sпов = 100 + 240 = 340 ед. кв.
По теореме Пифагора найдем радиус основания:
R= √(10^2-5^2)= √(100-25)= √75=5√3 см (так как образующая является гипотенузой, а высота катет)
Площадь осевого сечения равна
S=(h*D)/2=(h*2R)/2 (h – высота D – диаметр)
S=(5*2*5√3)/2=25√3 см