я тут уже решал подобную задачу.
Точки пересечения биссектрис - это центры окружностей, качающихся левой (или правой) стороны и обеих оснований. Поэтому отрезок, соединяющий эти центры - ЧАСТЬ СРЕДНЕЙ ЛИНИИ :))). Далее, если бы эти центры совпадали, то длинна средней линии была бы равна ПОЛУСУММЕ БОКОВЫХ СТОРОН, то есть 14. (в этом случае трапеция была бы "ОПИСАНА ВОКРУГ ОКРУЖНОСТИ", а у таких 4угольников суммы противоположных сторон равны). Поэтому ответ 21-14=7. :)))
(Именно на это расстояние как бы раздвинуты вписаные окружности - пояснение такое :))).
Его высота МН делит хорду пополам ( на два равных отрезка по 4 см) и образует с основанием угол 60°
ОН⊥хорде АВ. Треугольник ОНВ - египетский ( из отношения катета и гипотенузы).
Следовательно, ОН=3 см
угол НМО равен 30°, гипотенуза МН=2*ОН=6. ⇒
МО=МН*sin 60°=6*√3):2=3√3
Объем конуса найдем по формуле
V=S*h:3
S=πr²=π*25 см²
V=π*25*(3√3):3=25V=π*25*√3 cм³