Плоскость альфа пересекает стороны ав и ас треугольника авс соответственно в точках в1 и с1. известно, что вс паралельна альфа. ав так относится к в1в, как 5: 3. ас=15см найти ас1.
ВС║α, плоскость (АВС) проходит через ВС и пересекает α, значит линия пересечения В₁С₁║ВС.
∠АВС = ∠АВ₁С₁ как соответственные при пересечении В₁С₁║ВС секущей АВ, ∠ВАС общий для треугольников АВС и АВ₁С₁, значит эти треугольники подобны по двум углам.
АВ : ВВ₁ = 5 : 3, значит АВ₁ : АВ = 2 : 5.
Из подобия треугольников АВС и АВ₁С₁ следует, что АС₁ : АС = АВ₁ : АВ = 2 : 5 АС₁ : 15 = 2 : 5 АС₁ = 15 · 2 / 5 = 6 см.
Ромб АВСД, уголВ=уголД, уголА=уголС, уголС=1/2уголД, уголД=2*уголС, уголС+уголД=180, 3*уголС=180, уголС=уголА=180/3=60, уголД=уголВ=2*60=120, АМ=МД=х, АД=2*АМ=2х=ВС=АВ=СД, СО=ОД=х, площадь треугольника ВСО=1/2*ВС*СО*sinС=1/2*2х*х*корень3/2=х в квадрате*корень3/2, площадьтреугольника ОДМ=1/2*ОД*МД*sinД=1/2*х*х*корень3/2=х в квадрате/4, площадь треугольника АВМ=1/2*АВ*АМ*sinА=1/2*2х*х*корень3/2=х в квадрате*корень3/2, площадь АВСД=АВ в квадрате*sinА=2х*2х*корень3/2=2*х в квадрате*корень3, площадь треугольника ВМО=площадьАВСД-площадь АВМ-площадь-ВСО-площадь ОДМ=2*х в квадрате-(х в квадрате*корень3/2) -(х в квадрате*корень3/2)-(х в квадрате*корень3/4)=3*х в квадрате*корень3/4, 3√з = 3*х в квадрате*корень3/4, х в квадрате=4, х=2, АВ=АД=СД=ВС=2*2=4, площадь АВСД=4*4*корень3/2=8*корень3
1. Координаты середины отрезка - полусумма координат начала и конца. Значит С((2-2)/2;(2+2)/2) или С(0;2). ответ г). 3. Координаты вектора - разность координат конца и начала этого вектора. АВ{-2-2;7-7} или AB{-4;0}. 4. Длина вектора а{6;-8} равна его модулю: |a|=√(6²+(-8)²)=10. 5. Чтобы проверить, лежит ли точка на окружности, надо подставить координаты точки в уравнение окружности: (-5+5)²+(-3-1)²=16 или 0+16=16. ответ: а) да, лежит. 6. Длина радиуса этой окружности - модуль вектора М0. |M0|=√(0-(-3))²+(0-4)²)=√(9+16)=5. ответ в)
∠АВС = ∠АВ₁С₁ как соответственные при пересечении В₁С₁║ВС секущей АВ, ∠ВАС общий для треугольников АВС и АВ₁С₁, значит эти треугольники подобны по двум углам.
АВ : ВВ₁ = 5 : 3, значит АВ₁ : АВ = 2 : 5.
Из подобия треугольников АВС и АВ₁С₁ следует, что
АС₁ : АС = АВ₁ : АВ = 2 : 5
АС₁ : 15 = 2 : 5
АС₁ = 15 · 2 / 5 = 6 см.