АВ - гипотенуза, СН - высота
АН = 3 см
НВ = 9 см
Объяснение:
Дано:
тр АВС (уг С=90*)
уг В = 30*
Ас = 6 см
СН - высота
Найти:
АН и НВ - ?
1) рассм тр АВС
АВ = 2* АС по св-ву катета, лежащего против угла в 30*,
АВ = 2*6 = 12 см
уг А = 90 - 30 = 60* по св-ву углов в прямоуг тр
2) рассм тр АНС, в нём уг А = 60* (из п1), уг Н = 90* (по усл СН - высота)
уг НСА = 90-60 = 30* по св-ву углов прямоуг тр;
АН = АС : 2 ; АН = 6 : 2 = 3 см по св-ву катета, лежащего против угла в 30*
3) АВ = АН + НВ
АВ = 12 см из 1 п
АН = 3 см из 2 п
НВ = 12 - 3 = 9 см
3.Найдем больший угол через теорему косинусов, зная, что больший угол лежит против большей стороны:
a^2=b^2+c^2-2bc•cosa
Подставим значения:
9=4+3-2•2•√3•cosa
cosa=1/2√3
Так как косинус отрицательный, то угол больше 90, а, значит, треуольник тупоугольный.
4.Используя теорему синусов, получаем:
8/0.4 = 16/sinBAC
32 = 16/sinBAC
sinBAC = 16/32 = 1/2
1/2 = sin30°
ответ: 30°
5.Рассм тр CFB (уг F = 90*по усл). По т Пифагора СВ=√(144+25)=√169=13 см
⇒СВ=АД, ⇒по АВСД - парллелограмм (противолеж стороны равны и параллельны)
Расстояние между скрещивающимися прямыми в общем случае находится так. Надо найти две параллельные плоскости, каждая из который содержит одну из прямых. Расстояние между этими плоскостями и будет искомым расстоянием.
Плоскость A1DC1 содержит прямую DC1. Треугольник A1DC1 - равносторонний, что означает, что трехмерная фигура D1A1DC1 - правильная треугольная пирамида, и вершина D1 проектируется на основание A1DC1 в центр K правильного треугольника A1DC1, то есть D1K перпендикулярно плоскости A1DC1 (это - высота пирамиды).
Кроме того, фигура BA1DC1 - тоже правильная треугольная пирамида (это - вообще правильный тетраэдр, все его ребра равны), и поэтому BK - высота этого тетраэдра к грани A1DC1, то есть BK перпендикулярно A1DC1.
Через точку K можно провести только одну прямую, перпендикулярную плоскости A1DC1, и на этой прямой лежат точки B и D1.
То есть, доказано, что плоскость A1DC1 перпендикулярна диагонали куба BD1.
Точно также можно доказать, что BD1 перпендикулярно плоскости AB1C, и поэтому плоскости AB1C и A1DC1 параллельны. Но параллельность этих плоскостей и так очевидна, поскольку A1C1 II AC; A1D II B1C; и разумеется, AB1 II DC1; но для доказательства параллельности достаточно указать две пары параллельных прямых. Однако то, что обе эти плоскости перпендикулярны диагонали BD1 - важно.
Если рассмотреть внимательнее тетраэдр BA1DC1, можно заметить, что плоскость AB1C пересекает "боковое ребро" BA1 в середине (диагонали квадрата A1B и AB1 делятся точкой пересечения пополам), поэтому сечение тетраэдра BA1DC1, параллельное грани тетраэдра A1DC1, - это такая "средняя плоскость", то есть она разделит пополам и остальные боковые ребра (BD и BC1, что можно увидеть и так) и, главное - высоту BK (по теореме Фалеса).
Аналогично можно показать, что плоскость A1DC1 делит пополам высоту тетраэдра D1AB1C. Если обозначить K1 - центр треугольника AB1C, то получается D1K1 = KK1 = K1B;
Все это - длинная теория, которую труднее набрать, чем понять.
Поскольку KK1 - отрезок прямой BD1, перпендикулярной обеим плоскостям A1DC1 и AB1C, то это и есть расстояние между этими плоскостями, а заодно - и расстояние между скрещивающимися прямыми DC1 и CB1.
Длина диагонали BD = 2√3, KK1 = 2√3/3;