80 п за в правильной четырехугольной пирамиде мавсd сторона основания равна 6, а боковое ребро -5. найдите: 1. площадь описанной около пирамиды сферы; 2. угол между вd и плоскостью dmc.
1. Описанная около данной нам правильной пирамиды сфера в сечении по диагонали основания пирамиды (квадрат) - это описанная около равнобедренного треугольника АМС окружность. Сторона треугольника АС это диагональ квадрата и равна 6√2. Стороны АМ и СМ - ребра пирамиды =5. Есть формула радиуса описанной около равнобедренного треугольника окружности: Ro=a²/√[(2a)²-b²] , где а=АМ=МС=5, b=АС=6√2. Подставляем и получим Ro=25/√(100-72) = 25/√28. Или Ro=25√7/14. Тогда площадь сферы равна Sc=4πR² =4π*25²*7/14²=17500*π/196 ≈ 280,36. Округлим до целых и получим Sc ≈ 280.
2. Угол между прямой BD и плоскостью DMC - это угол между этой прямой и ее проекцией на плоскость DMC.Опустим из точки О, принадлежащей прямой ВD перпендикуляр на плоскость грани DMC. Это будет перпендикуляр ОН на апофему МЕ. Тогда проекцией прямой DО на плоскость грани DMC будет прямая DH, а угол ОDН - искомый угол. ОН - перпендикуляр из прямого угла МОЕ прямоугольного треугольника МОЕ и равен МО*ОЕ/МЕ (по свойствам этого перпендикуляра). МО - высота пирамиды и равна по Пифагору √(МС²-ОС²)=√(25-18)=√7. (ОС=0,5*АС=3√2). МЕ - апофема грани DMC равна по Пифагору √(ОЕ²+МО²)=√(9+7)=4. Тогда ОН=МО*ОЕ/МЕ=√7*3/4. В прямоугольном треугольнике ОНD (<OHD-прямой) синус угла ОDН равен ОН/ОD (OD - гипотенуза) =(√7*3/4)/3√2 = √7/4√2 = √14/8. Угол равен arcSin(√14/8) ≈ arcSin(0,4677). Или ≈28°.
№1 За угол между диагоналями принимается больший из углов,значит им будет угол ВОС. Угол АВО=СРО=30гр. как накрест лежащие при параллельных прямых АР и ВС.Угол СВО =90-30=60гр. .Значит уол ВСО тоже равен 60 гр. так как точкой пересечения диагонали прямоугольника делятся на равные отрезки т.е ВО=СО .Из этого следует,что треугольник ВОС равнобедренный значит угол ВОС=180-(60+60)=60гр.
№2 Из вершины С опустим высоту К на сторону АД,получаем АК+КД=10 КД=10-6=4. Рассотрим треугольник СДК ,который прямоугольный и угол СДК=45гр.,значит Треугольник еще и равнобедренный ,получаем КД=СК=4,а СК=ВА ВА-меньшая боковая сторона=4.
№3 Так как КЕ биссектриса угол МКЕ=ЕКР,а угол МЕК=ЕКР(как накрест лежащие)=МКЕ, значит треугольник КМЕ равнобедренные,где МЕ=КМ=10 ЕN-обозначим за х,значит МN=КР=10+х, значит Периметр=10*2+2*(10+х)=52 решаем уравнение х=6,КР=10+6=16
3) Три Соединим все три вершины. Получился треугольник, две стороны которого - стороны параллелограмма, и третья - его диагональ так как, убрав у любого параллелограмма вершину, и стороны, которые проходят через нее, получаем треугольник, состоящий из двух сторон и диаг. паралл. Выбор расположения четвертой точки зависит от выбора стороны треуг., которая будет диагональю. Тогда возможны три варианта, так как у треуг. три стороны. Чтобы построить паралл. при заданной диагонали, достаточно из концов диагонали построить прямые, параллельные сторонам, лежащим против соответствующих вершин. Точка их пересечения - четвертая вершина паралл. 2) Периметр равен 10 смотри рисунок - треуг AKM - равноб так как KM || BC => KM=AK; ML = KB Тогда ML + KM = AK + KB ML+KM=5 P = 2(ML+KM)=10
треугольника окружности: Ro=a²/√[(2a)²-b²] , где а=АМ=МС=5, b=АС=6√2. Подставляем и получим Ro=25/√(100-72) = 25/√28. Или Ro=25√7/14.
Тогда площадь сферы равна Sc=4πR² =4π*25²*7/14²=17500*π/196 ≈ 280,36.
Округлим до целых и получим Sc ≈ 280.
2. Угол между прямой BD и плоскостью DMC - это угол между этой прямой и ее проекцией на плоскость DMC.Опустим из точки О, принадлежащей прямой ВD перпендикуляр на плоскость грани DMC. Это будет перпендикуляр ОН на апофему МЕ. Тогда проекцией прямой DО на плоскость грани DMC будет прямая DH, а угол ОDН - искомый угол.
ОН - перпендикуляр из прямого угла МОЕ прямоугольного треугольника МОЕ и равен МО*ОЕ/МЕ (по свойствам этого перпендикуляра).
МО - высота пирамиды и равна по Пифагору √(МС²-ОС²)=√(25-18)=√7. (ОС=0,5*АС=3√2).
МЕ - апофема грани DMC равна по Пифагору √(ОЕ²+МО²)=√(9+7)=4.
Тогда ОН=МО*ОЕ/МЕ=√7*3/4. В прямоугольном треугольнике ОНD (<OHD-прямой) синус угла ОDН равен ОН/ОD (OD - гипотенуза) =(√7*3/4)/3√2 = √7/4√2 = √14/8.
Угол равен arcSin(√14/8) ≈ arcSin(0,4677). Или ≈28°.