Введу другие обозначения: основания трапеции за b и c(b>c), а боковую сторону за a. так как трапеция описана, то b+c=a+a⇒b+c=2a. если провести две высоты из меньшего основания на большее, то они разделят большее основание на следующие отрезки: (c-b)/2, b, (c-b)/2. по теореме Пифагора a=√((c-b)²/2²+h²)⇒b+c=√((c-b)²/2²+h²)⇒h=√(c+b)²/2²-(c-b)²/2²)=1/2((c+b)²-(c-b)²)=1/2√(4bc)=√bc, что и требовалось доказать.
Обозначим длину биссектрисы через х. один из острых углов через а , второй тогда 90-а. биссектрисса делит треугольник на два. теорема синусов для обоих треугольников. х/sin a = 15/ sin 45. x/ sin(90-a) = 20/ sin 45 sin 90-a= cos a откуда 15 sin a = 20 cos a tg a = 4/3 гипотенуза 35 катеты 28 и 21 пифагоров треугольник 3 4 5 с коэффициентом подобия 7. опустим высоту на гипотенузу. если tg a = 4/3 , то sin a = 4/5 cos a = 3/5. опять же из пифагорова треугольника. гипотенуза поделиться высотой на отрезки 21 * cos a = 12.6 28* cos(90-a)= 28* sin a= 22.4
Вычитая из второго уравнения первое, получаем -2x+y -1=0; первоначальная система из двух уравнений равносильна системе из первого уравнения и полученного y=2x +1. Подставляя в первое уравнение вместо y выражение 2x +1, получаем квадратное уравнение относительно x:
x^2+(2x+1)^2=1; 5x^2+4x=0; x=0 (⇒y=1) или x= - 4/5 (⇒y=-3/5). Таким образом, официальный ответ оказался правильным.
Каким образом Вы получили свои числа я не понимаю. Но отсеять их просто. Надо подставить в оба уравнения, например, y= -1 и найти из каждого x. Если значения x окажутся разными, тогда y= -1 Вы отбросите. Аналогично поступите со вторым значением y. Доделаем для значения y= - 1 до конца. Из первого уравнения получаем x=0; из второго x^2-2x-2=0; очевидно, x=0 корнем этого уравнения не является. Вот мы y= -1 и забраковали. y=3/5 забракуйте сами
если провести две высоты из меньшего основания на большее, то они разделят большее основание на следующие отрезки: (c-b)/2, b, (c-b)/2.
по теореме Пифагора a=√((c-b)²/2²+h²)⇒b+c=√((c-b)²/2²+h²)⇒h=√(c+b)²/2²-(c-b)²/2²)=1/2((c+b)²-(c-b)²)=1/2√(4bc)=√bc, что и требовалось доказать.