Из точки О построим перпендикуляры ОК, ОН, ОК к прямым АВ, ВС и АС.
Треугольники ОВК и ОВН прямоугольные и равны, так как гипотенуза ОВ у них общая, а угол ОВН = ОВК, так как ВО биссектриса, тогда ОК = ОН.
Аналогично треугольник ОСН = ОСМ, а тогда ОМ = ОН.
Следовательно ОК = ОН = ОК, а значит через точки К, Н, С можно провести окружность с центром в точке О.
Треугольники АКО и АМО прямоугольные, у которых ОК = ОМ как радиусы окружности, АО общая гипотенуза, тогда треугольники равна по катету и гипотенузе. Следовательно, угол КАО = МАО, а АО биссектриса угла ВКМ и ВАС, что и требовалось доказать.
Пусть угол А=х, тогда и D=x, угол B=2x и угол С=2x
Тогда имеем x+x+2x+2x=360
6x=360
x=60
Углы равны A=60° D=60° , B=120° и C=120°