Перпендикуляр из заданной точки (2;-3;1) на плоскость -x+3y-3z-5 = 0 это прямая с направляющим вектором, равным нормальному вектору плоскости ( это (-1; 3; -3)).
По заданной точке и такому вектору получаем уравнение прямой, перпендикулярной заданной плоскости:
(x - 2)/(-1) = (y + 3)/3 = (z - 1)/(-3).
Теперь можно найти ортогональную проекцию точки (2;-3;1) на плоскость -x+3y-3z-5 = 0 как точку пересечения прямой с этой плоскостью.
Уравнение прямой выразим в параметрическом виде.
(x - 2)/(-1) = (y + 3)/3 = (z - 1)/(-3) = t.
x = -t + 2,
y = 3t - 3,
z = -3t + 1 и подставим в уравнение плоскости -x+3y-3z-5 = 0.
t - 2+ 9t - 9 +9t - 3 - 5 = 0,
19t - 19 = 0, отсюда t = 19/19 = 1.
Подставим t в параметрические уравнения прямой и получаем искомые координаты проекции точки на плоскость.
x = -t + 2 = -1 + 2 = 1,
y = 3t - 3 = 3*1 - 3 = 0,
z = -3t + 1 =-3*1 + 1 = -2.
ответ: точка (1; 0; -2).
Решение: Пусть ABCD – данная трапеция, AB||CD,AD=BC,AB<CD.
Угол ADC=угол BCD=a
Пусть О – центр вписанной в трапецию окружности. K, L, M, N – точки касания окружности со сторонами AB,BC,CD,AD соотвеcтвенно.
Площадь трапеции равна (AB+CD)\2*2r=(AB+CD)*r.
Центр вписанной окружности лежит на пересечении биссектрис.
Угол ODC=угол OCD=а\2
Угол OAB=угол OBA =90-а\2.
Далее по свойству суммы углов четырехугольника (сумма равна 360, один из улов а или 180-а, два других по 90)
Угол KON= угол MON=180-а.
Угол KOL= угол MOL=a.
Площадь KLMN равна 4*1\2*r^2*sin a=2*r^2*sin a (площадь четырех равновеликих треугольников , две стороны равны радиусам, синусы углов равны sin а).
DN=CN=r*ctg (a\2), CD=2*r*ctg (a\2).
AL=BL=r*ctg(90-a\2)=r*tg (a\2), AB=2*r*tg (a\2)
Площадь трапеции ABCD равна (AB+CD)*r=(2*r*ctg (a\2)+2*r*tg (a\2))*r=
2*r^2*(tg(a\2)+ctg(a\2))).
площадь четырехугольника с вершинами в точках касания занимает процент площади трапеции
2*r^2*sin a\(2*r^2*(tg(a\2)+ctg(a\2))) *100%=
=sin a\(tg (a\2)+ctg(a\2))*100%=
=sin a*tg (a\2)\ (tg^2 (a\2)+1)*100 %=(sin a^2 * 50) %
ответ: (sin a^2 * 50) %
угол В+угол D=180
x+3x=180
x=45
угол D=3x=135