Когда мы складываем вектора, мы образуем треугольник. (но вектора можно наложить друг на друга, а стороны треугольника - нет)
Значит, чтобы сумма векторов была наибольшей нужно, чтобы угол лежащий напротив него был наибольшим, То есть чтобы вектора были сонаправлены. (Наибольшая возможная угловая сумма треугольника 180°)
⇒ Мы просто из конца вектора A берём начало для вектора B и чертим два вектора (A и B) под углом 180°. (Допустим это вектор С)
С = А + В |A+B| = |C| |C| = | 29+18 | = 47
* Теперь просто из конца вектора A берем начало вектора В. Только теперь вектора противоположно направлены. И угол между ними 0°
С = А + В |A+(-B)| = |C| |C| = | 29+ (-18) | = | 29-18 | = 11
ответ: 11≤ |A+B| ≤47
(назовём трапецию АВСD)Очень просто, опусти второй, подобный первому, перпендикуляр. Поскольку длина первого отрезаного от основания отрезка равна 51, то и второй будет равен ему из - за того, эта трабеция равнобедренная. Значит вычтем от 94 51. 94-51=43. Значит, имеем прямоугольник.( жалко не могу начертить) Зная, что у прямоугольника противоположные стороны равны, получам длину меньшего основания. Она равна 43. А теперь по формуле нахождения средней линии, находим эту среднюю линию: (не забываем, что у большего основания длина равна 94+51=145) (145+43):2=94.
Очень, очень просто)))
a{-2;-5;0}
A(2;7;0)
xa=xB-xA, xB=xa+xA
xB=-2+2, xB=0
yB=-5+7, yB=2
zB=0+0, zB=0
B(0;2;0)
ответ: В(0;2;0)