Объяснение:
№3
<1+<2=180°
Пусть градусная мера угла <1 будет 2х°, тогда градусная мера угла <2 будет 7х°.
Составляем уравнение.
2х+7х=180°
9х=180
х=180/9
х=20
2*20=40° градусная мера <1;
7*20=140° градусная мера угла <2.
<3=<2, вертикальные углы.
<3=140°
ответ: <3=140°
№4
<2+<1=180°
Пусть градусная мера угла<1 будет х°, тогда градусная мера угла <2 будет 4х°.
Составляем уравнение
х+4х=180
5х=180
х=180/5
х=36° градусная мера угла <1;
4*36=144° градусная мера угла <2
<1=<3, вертикальные углы
<3=36°
ответ: <3=36°
1) угол M= углу R(потому что в параллелограмме противолежащие углы равны)=140/2=70 градусов
угол P= углу N= (180-70)= 110
2) так как сторона AD равна стороне DC данный параллелограмм является ромбом. а в ромбе диагонали это и биссектрисы
↓
угол ADC= углу ABC=ODC*2= 60*2=120 градусов
↓
угол BAD= углу DCB=180-ADC=180-120=60 градусов
углы найдены)
3)Примем за x сторону KF, тогда:
KM=FL=2x. KF=ML=x.
Составим и решим уравнение:
KM+FL+KF+ML=36
2x+2x+x+x=36
6x=36
x=6
KM=FL=2*6=12
KF=ML=6
4)Решаем аналогично 3 задаче.
так как сторона AB относится к стороне BC как один к двум.
значит: AB=CD=x, а BC=AD=2x
Составим уравнение и решим его:
2x+2x+x+x=36
6x=36
x=6
AB=CD=6. BC=AD=2*6=12
Сторона многоугольника равна P/n (P-периметр)
т е длины сторонотносятся друг к другу как а/n к b/n
S=n/4*L^2*ctg(pi/n) где L длина стороны многоугольника
подставляем вместо L а/n и b/n
делим одну площадь на другую все сокращается остается а^2 /b^2
именно так и относятся площади