Дан р\б треугольник ABC, высота AD. Рассмотрим получившийся треугольник ADC, угол D - прямой, угол А - 45 градусов, следовательно угол С также 45 градусов (сумма углов в треугольнике - 180 градусов). Тогда получаем, что треугольник ADC - р\б (углы при основании равны), т.е. AD=DC=6. Но так как труг-к ABC также р\б, мы получаем противоречие и делаем вывод, что высота AD совпадает со стороной AB. Имеем: BC=AB = 6. По формуле находим площадь треуг-ка: 1\2 произведения катетов, т.е. получаем 1\2*6*6 = 18.
Sboc = 80 ед².
Объяснение:
АА1 и ВВ1 - биссектрисы (дано). Биссектрисы треугольника пересекаются в одной точке, которая является центром окружности, вписанной в этот треугольник (свойство биссектрис треугольника). Следовательно, расстояние от точки О до прямой ВС (являющееся высотой треугольника ВОС), равно радиусу вписанной окружности, равному по условию отрезку ОК (перпендикуляр к стороне АВ) = 8 см.
Тогда площадь треугольника ВОС равна половине произведения высоты на сторону, у которой проведена эта высота. То есть
Sboc = (1/2)·8·20 = 80 ед².