;в равнобедренную трапецию,периметр который равен 100.а площадь равна 500,можно вписать окружность.найдите расстояние от точки пересечения диагоналей трапеции до ее меньшего основания.
Из условия задачи следует, что угол при основании треугольника АВС равен 30 град. Обозначим сторону равнобедренного треугольника через а, основание через b, радиус описанной окружности через R. Половина основания b/2=а*cos(30)=a*sqr(3)/2, b=a*sqr(3) Известно, что: R=a^2/sqr(4a^2-b^2) Подставив значение b, получим: R=a Отсюда: АВ=2 см Во второй задаче центр вписанной окружности совпадает с точкой пересечения биссектрис, поскольку радиусы опущенные из центра в точки М, Т и Р, образуют пары равных прямоугольных треугольников (ВОМ и ВОТ и т.д.). Четырехугольник РОТС является квадратом, так как радиусы проведены в точки касания и перпендикулярны катетам. По условия диагональ этого квадрата равна корень из 8, следовательно сторона будет в корень из двух раз меньше, отсюда: r=sqr(8/2)=2 Угол ТОР=90 град. Угол ТМР является вписанным, он измеряется половиной дуги, на которую опирается. Дуга составляет 90 градусов, так как ограничена точками Р и Т, а угол РСТ прямой. Следовательно угол ТМР=45 град.
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Доказательство: Пусть дан прямоугольный треугольник с катетами а и b и гипотенузой с. Составим из четырех таких треугольников квадрат со стороной а + b как на рисунке. Внутри получим квадрат со стороной с. Площадь большого квадрата равна сумме площадей составляющих его фигур: S = 4·SΔ + c² = 4 · ab/2 + c² или S = (a + b)² Приравняем правые части: 2ab + c² = (a + b)² 2ab + c² = a² + b² + 2ab c² = a² + b² Что и требовалось доказать.