Прямые, соединяющие центр вписанной окружности с концами боковой стороны - это биссектрисы внутренних односторонних углов при параллельных основаниях и секущей боковой стороне. Сумма таких углов 180 градусов, сумма половин - 90 градусов, то есть эти прямые перпендикулярны. Поэтому радиус, проведенный в точку касания этой боковой стороны, является высотой к гипотенузе в прямоугольном треугольнике. Если меньший отрезок (на который точка касания делит гипотенузу-боковую сторону) принять за х, а больший за 4*х, то высота - среднее геометрическое этих отрезков.
Действительно, высота делит прямоугольный треугольник на два подобных между собой прямоугольных треугольника - и подобных исходному, конечно - по признаку равенства углов, поэтому
4*х/12 = 12/x;
(4*х)*х = 12^2 = 144; x^2 = 36; x = 6
Боковая сторона равна 30, а периметр 120
(сумма боковых сторон равна сумме оснований)
Тогда площади треугольников за пределами MKP в сумме дадут
(с/2 - x)*(b/2 + z)*sin(A)/2 + (c/2 + x)*(a/2 - y)*sin(B)/2 + (a/2 + y)*(b/a - z)*sin(C)/2;
Тут могут быть какие-то вопросы, что именно и как обозначено. На самом деле это совершенно не важно. Обозначьте как-то стороны a b c (само собой, напротив стороны a лежит угол A и так далее), и на стороне a точка лежит на y от середины, на стороне b - на расстоянии z от середины, на стороне c - на расстоянии x от середины. При этом x y z могут принимать и положительные, и отрицательные значения. Смысл задачи в том, чтобы доказать, что замена x y z => -x -y -z не изменяет знака приведенного выражения (само собой, тогда эта замена не влияет и на площадь MKP).
Если раскрыть скобки, получится вот что
(cb/4 - xz)*sin(A)/2 + (ca/4 - xy)*sin(B)/2 + (ab/2 - yz)*sin(C)/2 +
+ (x/4)*(a*sin(B) - b*sin(A)) + (y/4)*(b*sin(C) - c*sin(B)) +
+ (z/4)*(c*sin(A) - a*sin(C));
Первые три слагаемых очевидно не меняют знака при x y z => -x -y -z,
три других слагаемых равны 0 по теореме синусов, поскольку
a/sin(A) = b/sin(B) = c/sin(C);
всё доказано.