Докажите ,что если любая прямая а параллельна плоскости b, то любая ,прямая параллельная прямой а и проходящая через точку плоскостиb. лежит в плоскости b.
В основании правильной 4-ной пирамиды лежит квадрат. Пусть его диагонали равны 2х, тогда из условия равновеликости имеем: 1/2*2x*2x=1/2*2x*10, значит: 2x=10 <=> x=5. Площадь основания равна 2x^2=2*25=50. Ребро основания по теореме Пифагора равно кореньиз(25+25)=5*кореньиздвух. Боковое ребро по теореме Пифагора равно кореньиз (100+25)=5*кореньизтрех. Т.к. боковая грань это равнобедр.треуг.со сторонами 5*кореньизтрех, 5*кореньизтрех, 5*кореньиздвух, то площадь найдем как полупроизведение высоты на основание. Высота грани по теореме Пифагора равна кореньиз(125-12,5)=кореньиз(112,5)=7,5*кореньиздвух. Площадь грани равна 1/2*5*кореньиздвух*7,5*кореньиздвух=37,5. Полная поверхность равна 4*37,5+50=200. ответ: 200.
Пусть основание равно Х, тогда боковая сторона равна (Х-9). В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна √[(Х-9)²-(X/2)²]=√(15²-12²)=9см. ответ: высота, проведенная к основанию, равна 9см.
назовем точку в плоскости бетта (т.В)
через неё проходит ЛЮБАЯ\случайная прямая b -праллельная (a)
аксиома : через прямую (а) и точку (В) можно провести только одну плоскость - назовем альфа
пересечение плоскостей бетта /альфа в т.В- прямая параллельная (а) -назовем m
тогда получается, что через т.В проходит две параллельных прямых m и b для (а)
противоречие свойству №2
В одной плоскости с заданной прямой через точку, не лежащую вне прямой можно провести только одну прямую , параллельную заданной.
следовательно прямые m и b- совпадают, значит m лежит в плоскости бетта
ДОКАЗАНО