Из заданного соотношения длин сторон треугольника АВС имеем:
АВ = 1, АС = (3/2)АВ, ВС = (4/3)АВ.
Приводим к общему знаменателю и представляем длины сторон подобного треугольника в целом виде: А1В1 = 6, А1С1 = 9, В1С1 = 8.
Находим углы этого (они же и у заданного) треугольника по теореме косинусов : cosα = (b²+c²−a²)/2bc.
Подставив данные длин сторон треугольника А1В1С1, находим:
cos A = 0,490741,
cos B = 0,1979167,
cos C = 0,756944.
Соответственно углы равны:
A = 1,057857 радиан или 60,61072 градусов,
B = 1,371564 78,584842,
C = 0,712172 40,804438.
Отсюда находим угол Q1D1B1 по сумме углов смежного треугольника: ∠Q1D1B1 = (1/2)∠А + ∠С = 71,109798 градуса.
Теперь переходим к длинам треугольника Q1D1B1.
Длина B1D1 по свойству биссектрисы р = ((ас)/(b + c)) равна:
B1D1 = p = (8*6)/(9 + 6) = 48/15 = 16/5 = 3,2.
Отрезок С1D1 = q = 8 - 3,2 = 4,8.
Находим длину биссектрисы А1D1:
A1D1 = √(bc - pq) = √(9*6 - 3,2*4,8) = √38,64 ≈ 6,216108.
Биссектриса А1D1 делится точкой пересечения с биссектрисой В1Е1 в отношении (b + c)/a. Отсюда находим длину Q1D1.
Q1D1 = A1D1*(a/(a + b +c)) = 6,216108*(8/23) = 2,162125.
Теперь можно определить площадь подобного треугольника Q1D1B1 по двум сторонам и углу между ними.
S(Q1B1D1) = (1/2)*2,162125*3,2*sin71,109798° = 3,273079.
Находим коэффициент"к" пропорциональности треугольников QBD и Q1B1D1:
к =√(S(QBD)/S(Q1B1D1)) = √(1/3,273079) = 0,552741.
По этому же коэффициенту находим длины сторон треугольника АВС.
Площадь АВС = 7,1875 А1В1 = В1С1 = А1С1 = Р = 12,713046
AB =3,316447
BC =4,421929
AC =4,974670/
Площадь АВС находим по формуле Герона.
Р = 12,713046, р = 6,356523.
S(АВС) = 7,1875 кв.ед.
Проверяем соотношение длин сторон:
1 1,3333 1,5
1 4/3 3/2. Соответствует заданному.
ответ: площадь АВС = 7,1875 кв.ед.
Даны вершины треугольника А(-2; 1), В(2; 4), С((-2;-2).
1) Векторы АВ = (4; 3), ВС = (-4; -6), АС = (0; -3).
Уравнения (канонические):
АВ: (х + 2)/4 = (у - 1)/3.
ВС: (х - 2)/(-4) = (у - 4)/(-6). Общий вид: 3х -2у + 2 = 0.
АС: (х + 2)/0 = (у - 1)/(-3). Это линия х = -2.
2) Точка М: х(М) = (-2+2-2)/3 = -2/3,
у(М) = (1+4-2)/3 = 1. Точка М((-2/3); 1).
3) Находим уравнение высоты АД из условия А1А2 + В1В2 = 0.
АД: 2х + 3у + С = 0. Подставим координаты точки А:
2*(-2) + 3*1 + С = 0, отсюда С = 4 - 3 = 1.
АД: 2х + 3у + 1 = 0.
Если задано уравнение прямой ВС: Ax + By + C = 0, то расстояние от точки А(Аx, Аy) до прямой ВС можно найти, используя следующую формулу : d = |A·Аx + B·Аy + C| . А(-2; 1).
√(A² + B²) ВС: 3х -2у + 2 = 0.
Подставим данные: d = |3·(-2) + (-2)·1+ 2| =
√(3² + (-2)²)
= |-6 - 2 + 2|/√13 = 6/√13 ≈ 1,664.
4) Так как одна сторона треугольника вертикальна и равна 3, то высота равна разности координат точек по оси Ох, то есть 2 - (-2) = 4.
ответ: S = (1/2)*3*4 = 6.