М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
LenaMatveyeva2
LenaMatveyeva2
22.05.2021 02:45 •  Геометрия

Найдите острые углы прямоугольного треугольника, если его гипотенуза = 12 см, а площадь = 18 см²

👇
Ответ:
sasasnikas
sasasnikas
22.05.2021
Tg β = b/a
где a= \frac{c+2r+ \sqrt{c^2-4cr-4r^2} }{2} ;b= \frac{c+2r- \sqrt{c^2-4cr-4r^2} }{2}
P=a+b+c\\ P= \sqrt{(a+b)^2}+c \\ P= \sqrt{a^2+2ab+b^2}= \sqrt{c^2+4S}+c= \sqrt{12^2+4\times18}+12=6 \sqrt{6} +12\\ r= \frac{2S}{P}= \frac{2\cdot 18}{6 \sqrt{6} +12}= \frac{2\cdot 18(6\sqrt{6}-12)}{(6\sqrt{6})^2-12^2} =3\sqrt{6}-6\\ a= \frac{c+2r+ \sqrt{c^2-4cr-4r^2} }{2}= \frac{12+2(3\sqrt{6}-6)- \sqrt{12^2-4\cdot 12(3\sqrt{6}-6)-4(3\sqrt{6}-6)^2} }{2}=3\sqrt{6}+3\sqrt{2}
b= \frac{12+2(3\sqrt{6}-6)- \sqrt{12^2-4\cdot 12(3\sqrt{6}-6)-4(3\sqrt{6}-6)^2} }{2}=3\sqrt{6}-3\sqrt{2}
tg \beta= \frac{3\sqrt{6}-3\sqrt{2}}{3\sqrt{6}+3\sqrt{2}} =\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}} =2-\sqrt{3} \\ \beta =arctg(2-\sqrt{3})=15а
\alpha =90а-15а=75а

Окончательный ответ: 15а;75а.
Найдите острые углы прямоугольного треугольника, если его гипотенуза = 12 см, а площадь = 18 см²
4,8(60 оценок)
Ответ:
mixer239
mixer239
22.05.2021
     решение во вложении, в файле
Найдите острые углы прямоугольного треугольника, если его гипотенуза = 12 см, а площадь = 18 см²
Найдите острые углы прямоугольного треугольника, если его гипотенуза = 12 см, а площадь = 18 см²
4,8(79 оценок)
Открыть все ответы
Ответ:
TeReNoRi
TeReNoRi
22.05.2021

6

 

AD=25

AB=15

BAC=DAC

DB и АВ перпендиккулярны

 

Накрест лежащие углы CAD и АСВ равны. Тогда АВС равнобедренный и ВС=15

Треугольники ABH и ABD подобны. Отношение:

АВ:АН=АD:АВ

15:АН=25:15

АН=9

 

Остается найти ВН  по теореме Пифагора:

ВН=корень(15^2-9^2)=12

 

S=(15+25)/2*12=240

 

ответ: 240

 

7

 

Теорема косинусов для треугольника AМC

AC^2=AM^2+MC^2-2*AM*CM*cosAMC

 

Теорема косинусов для треугольника BМC

BC^2=BM^2+MC^2-2*BM*CM*cosBMC

 

AC=BC (треугольник равносторонний) Тогда AC^2=BC^2

 

AM^2+MC^2-2*AM*CM*cosAMC=BM^2+MC^2-2*BM*CM*cosBMC

AM^2-2*AM*CM*cosAMC=BM^2-2*BM*CM*cosBMC

 

АМ и ВM знаем

2^2-2*2*CM*cosAMC=10^2-2*10*CM*cosBMC

4-4*CM*cosAMC=100-20*CM*cosBMC

 

Углы ВМС и ВАС равны, опираются на одну дугу. ВАС=60 - равносторонний треугольник.

Угол АМС=АМВ+ВМС=АСВ+ВАС=60+60=120

 

4-4*CM*cos120=100-20*CM*cos60

4-4*CM*(-1/2)=100-20*CM*1/2

4+2*CM=100-10*CM

12*CM=96

СМ=8

 

ответ: 8

4,8(70 оценок)
Ответ:
hhhh34
hhhh34
22.05.2021

7

 

Теорема косинусов для треугольника AМC

AC^2=AM^2+MC^2-2*AM*CM*cosAMC

 

Теорема косинусов для треугольника BМC

BC^2=BM^2+MC^2-2*BM*CM*cosBMC

 

AC=BC (треугольник равносторонний) Тогда AC^2=BC^2

 

AM^2+MC^2-2*AM*CM*cosAMC=BM^2+MC^2-2*BM*CM*cosBMC

AM^2-2*AM*CM*cosAMC=BM^2-2*BM*CM*cosBMC

 

АМ и ВM знаем

2^2-2*2*CM*cosAMC=10^2-2*10*CM*cosBMC

4-4*CM*cosAMC=100-20*CM*cosBMC

 

Углы ВМС и ВАС равны, опираются на одну дугу. ВАС=60 - равносторонний треугольник.

Угол АМС=АМВ+ВМС=АСВ+ВАС=60+60=120

 

4-4*CM*cos120=100-20*CM*cos60

4-4*CM*(-1/2)=100-20*CM*1/2

4+2*CM=100-10*CM

12*CM=96

СМ=8

4,4(69 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ