Найдём величину каждой из сторон параллелограмма.
Т.к. одна из сторон равна 5 см, противоположная ей также равна 5 см. Вместе они составляют 10 см.
Две остальные стороны в сумме дают 28 - 10 = 18 см. Отдельно каждая = 18:2 = 9 см.
Угол 1 и угол 3 равны, т.к. они накрест лежащие.
Угол 1 и угол 2 равны, т.к. их образует биссектриса.
Благодаря тому, что угол 2 и угол 3 равны, образуется равнобедренный треугольник, в котором нам уже известна одна из сторон, которая равна 5 см. Т.к. треугольник равнобедренный, другая сторона, которая не биссектриса, также равна 5 см. Она же является частью ответа.
Чтобы найти второй отрезок, который образовала биссектриса, надо из длины основания вычесть длину уже известного отрезка: 9-5=4см.
ответ: биссектриса делит основание на отрезки 5 см. и 4 см.
отрезок: https://ru-static.z-dn.net/files/dac/eb9ac605c9ff7c6529f4cd258e6f7551.jpg
Путься трапеция прямоугольная и угол DAB прямой. Тогда двумя меньшими сторонами являются стороны AB и BC и они равны по 6 см, опустим перпендикуляр из С к стороне AD. у нас получится квадрат ABCD. У квадрата все углы равны 90 градусов. По условию известно, что больший угол равен 135, большим углом является угол BCD, следовательно угол OCD равен 135-90=45. угол CDO равен 180-90-45=45. у треугольника COD два угла равны, следовательно, он является равнобедренным и сторона CO=OD=6см. Теперь вернемся к нашей трапеции, AO+OD=12 см
Площадь трапеции равна произведения полусуммы оснований на высоту. Тоесть (6+12)/2*6=54см^2