ответ: 4 см.
Объяснение:
По теореме косинусов.
64+64+2*8*8*1/2=АС²
АС=8√3, ее половина =4√3, Высоту найдем из прямоугольного треугольника, образованного высотой, половиной основания и боковой стороной. Высота ВН=√(64-48)=4
Второй
Площадь равна 8²sin120°/2=16√3, а с другой стороны, та же площадь равна АС*ВН/2=АС*ВН/2=4√3*ВН/2=16√3, откуда ВН=4см
Третий
Угол А при основании равнобедренного ΔАВС равен (180°-120°)/2=30°
В Δ АВН высота ВН лежит против угла в 30 °, поэтому равна половине гипотенузы АВ, т.е. 8/2=4/см/
f'(x)=10-10x
Теперь стационарные точки:
10-10х=0
10=10х
х=1.
Теперь смотрим, что нам надо найти - точки максимума(минимума) - это х или значения функции(это у). Второе.
Значит, подставляем конечные значения и стационарные точки в исходную функцию и смотрим, какое значение наименьшее.
Подставим -1:
10*(-1)-5*(-1)^2=-10-5=-15
Подставим 1:
10-5=5
Подставим 2:
10*2-5*4=20-20=0.
Наименьшее значение ФУНКЦИИ = -15.