Несколько теорем к решению данной задачи :
1. В равнобедренном тр-нике боковые стороны равны;
2. Высота в равнобедренном тр-ке делит основание пополам.
3) Теорема Пифагора.
Дано: АВС - равноб.тр-ник
АВ = ВС = 17см
ВН (высота) = 8см
Найти: АС
ВН делит основание на отрезки АН и НС; АН=НС
Рассмотрим треугольник АВН
АВ -гипотенуза, ВН и АН - катеты.
АВН -прямоугольный тр-ник
По т. Пифагора определим АН
АН = YAB^2 - BH^2
AH = Y 17^2 - 8^2 = Y 289 - 64 = Y225 = 15
AC = 2*15 = 30
ответ: АС = 30 см.
пусть CA=5 см и CB=10 см ,высота пирамиды будет CD = 7 см , действительно , DC ⊥ CA ;DC ⊥ CB ⇒DC⊥ плоскости (ABC) .
V =1/3 *(5*10)/2 *7 =175/3 (см³) . * * * 58 1/3 * * *
Sпол = S(ACD) + S(BCD) +S(ABC)+S(ADB) .
S(ACD) =AC*CD/2 =5*7/2 = 17,5 (см²) ;
S(BCD) =BC*CD/2 =10*7/2= 35 (см²) ;
S(ABC) =AC*BC/2 = 5*10/2 =25 (см²) .
Площадь треугольника ADB можно вычислить по формуле Герона (известны AB =√125 ; AD=√74 ; BD =√149 ) , но арифметика скучная ...
Поэтому поступаем иначе ; из вершины прямого угля С треугольника ABC проводим высоту CH ⊥ AB и H соединим с вершиной D.
AB ⊥ HC ⇒ AB ⊥ HD (HC проекция HD) ,<CHD =α.)
S(ABC) =S(ADB)*cosα ⇒ S(ADB)= S(ABC)/cosα =25/cosα.
S(ABC) =AC*BC/2 = AB *СН/2 ⇒ СН =5*10/√125 =10/√5 =2√5 .
Из ΔHCD по теореме Пифагора CD = √(CH²+CD²) =√((2√5)² +7²) =√69;
cosα =CH/CD =2√5/√69 ;
S(ADB)= 25/cosα =25√69/2√5 =2,5√345 (см²) .
Таким образом окончательно
Sпол =(77,5 +2,5√345 ) см².
ответ : ( 77,5 +2,5√345) см² , 175/3 см³.