Решать можно двумя 1) прямоугольник( соответственно и его половина - прямоуголный 3-уг) имеет наибольшую плошадь при равенстве сторон , т.е. квадрат. Это если мы это знаем. Тогда катеты его равны между собой и равны ( по т. Пифагора, по синусу-косинусу, разное можно предложить ) например 2) если мы этого не знаем, тогда пусть одна сторона будет х, тогда другая будет берем производную, приравниваем к 0 (находлим экстремум). В результате находим Х, который равен тому, что в 1) другая сторона такая же (тоже ее находим по т. Пифагора))
Дано C =90° ; c=8 см . S =a*b/2 (a и b катеты треугольника ) ; известно √a*b ≤(a+b)/2 притом равенство выполняется при а=b * * * max (a*b) =((a+a)/2))² =a² * * * max(S) при а=b . a² +b² =c² ; 2a²=c² ; a=b =c/√2 =8 см/√2 =4√2 см.
ответ : 4√2 см. * * * * * можно и с производной * * * * * S(x) =1/2 *x√(c² -x²) , где x _ длина катета . При каких значениях x площадь треугольника S принимает наибольшее значение ?
В данной пирамиде в основании лежит правильный шестиугольник. В нём АВ║СF, значит угол между СО и плоскостью SBC такой же, как и между стороной АВ и той же плоскостью. SM - апофема грани SBC, OK⊥SM, SM∈SBC, значит СК⊥ОК. Тр-ник СКО прямоугольный, значит ∠КСО - угол между СО и плоскостью SBC. Тр-ник ВОС равносторонний. СО=ВС=1. ОМ - высота правильного тр-ка. ОМ=а√3/2=ВС√3/2=√3/2. В тр-ке SMB BM=BC/2=0.5. SM=√(SB²-BM²)=√(4-0.25)=√3.75. В тр-ке SMO cosM=OM/SM=√3/(2√3.75). sin²M=1-cos²M=1-3/15=12/15. В тр-ке ОКМ ОК=ОМ·sinM=√3·√12/(2√15)=3/√15=√15/5. В тр-ке СКО sin(КСО)=КО/СО=√15/5. ∠КСО=arcsin√15/5≈50.8° - это ответ.
1) прямоугольник( соответственно и его половина - прямоуголный 3-уг) имеет наибольшую плошадь при равенстве сторон , т.е. квадрат. Это если мы это знаем. Тогда катеты его равны между собой и равны ( по т. Пифагора, по синусу-косинусу, разное можно предложить )
например
2) если мы этого не знаем, тогда пусть одна сторона будет х, тогда другая будет