Вправильной четырёхугольной пирамиде со стороной основания 13корень из 5 проведена плоскость, параллельная основанию. найти площадь сечения, если боковое ребро пирамиды делится этой плоскостью в отношении 1: 4 (считая от вершины пирамиды)
После уточнения своих данных используй правило подобия. Если линейный коэф. подобия равен 1/4, то для площади он равен (1/4)^2=1/16, т.е. 16 часть от площади основания.
№5 Угол СВТ = углу АТВ- накрест лежащие Угол СВТ = углу АВТ-ВТ - биссектриса угла АВС угол АТВ = углу АВТ- углы при основании треугольника АВТ треугольник АВТ - равнобедренный=> АТ=АВ=9см ТД=СД=9см АД = 9*2 = 18см (18+8):2=13 см ответ:средняя линия трапеции равна 13 см
№6 Пусть четырёхугольник ABCD.Пусть M, N, K, L соотв. середины его сторон AB, BC, CD и AD.Тогда в треугольнике ABC: MN является средней линией, значит, равна половине диагонали BC четырёхугольника.Аналогично доказываем, что NK=1/2 AC, KL=1/2 BC, LM=1/2 AC.Но так как AC=BC получаем, что MN=NK=KL=LM
№7 Если соединить середины сторон четырехугольника, у которого диагонали перпендикулярны, то получатся прямые, параллельные диагоналям четырехугольника, а значит они тоже пересекаются под прямым углом таким образом получаем прямоугольник.
№5 Угол СВТ = углу АТВ- накрест лежащие Угол СВТ = углу АВТ-ВТ - биссектриса угла АВС угол АТВ = углу АВТ- углы при основании треугольника АВТ треугольник АВТ - равнобедренный=> АТ=АВ=9см ТД=СД=9см АД = 9*2 = 18см (18+8):2=13 см ответ:средняя линия трапеции равна 13 см
№6 Пусть четырёхугольник ABCD.Пусть M, N, K, L соотв. середины его сторон AB, BC, CD и AD.Тогда в треугольнике ABC: MN является средней линией, значит, равна половине диагонали BC четырёхугольника.Аналогично доказываем, что NK=1/2 AC, KL=1/2 BC, LM=1/2 AC.Но так как AC=BC получаем, что MN=NK=KL=LM
№7 Если соединить середины сторон четырехугольника, у которого диагонали перпендикулярны, то получатся прямые, параллельные диагоналям четырехугольника, а значит они тоже пересекаются под прямым углом таким образом получаем прямоугольник.
т.е. 16 часть от площади основания.