Строим сечение. Соединяем точку В с точкой К (серединой SC)
Проводим КМ || AB, Соединяем точку М с точкой А
Сечение ВКМА- трапеция.
КМ- средняя линия треугольника SCD и КМ=1/2 CD=1/2
В треугольнике BSC SK- медиана, но так как треугольник равносторонний, то и высота. По теореме Пифагора BK²=BC²-KC²=1-(1/2)²=3/4.
BK=√3/2.
Находим площадь равнобедренной трапеции : МК=1/2, АВ=1, ВК=МА=√3/2 ( см рисунок 2)
Проводим высоты КН и МР. ВН=РА=1/4
По теореме Пифагора
КН²=ВК²-ВН²=(√3/2)²-(1/4)²=3/4-1/16=12/16-1/16=11/16
КН=√11/4
S(сечения)=(АВ+КМ)КН/2=1/2 ·(1+1/2)√11/4=3√11/16
Объяснение:
Объяснение:
1. Начертим четырехугольник MKPE. Проведем отрезки, соединяющие две несоседние вершины - диагонали MP и KE.
2. Не знаю.
3. Начертим четырехугольник BCKM. KC и BM - это соседние стороны KM.
4. Так как в четырехугольнике BCOE все 4 угла равны по 90°, то это - прямоугольник. А так как параллельны только стороны BC и OE, то это не параллелограмм.
5. Нет. Так как в параллелограмме точка пересечения диагоналей делит эти диагонали пополам.
6. Параллелограмм.
7. Тут мы просто 2,5 и 3,5 умножим на 2. Получим 5 и 7 см. Задачка некорректная, так как диагонали в параллелограмме должны быть равны.
8. Периметр параллелограмма находится по формуле P = 2(AB + BC)
Составим уравнение:
2(3 + BC) = 20
раскроем скобки:
6 + 2BC = 20
2BC = 14
BC = 7
9. Угол A - острый, следовательно, он будет равен 45 градусам.
По признаку параллелограмма углы, лежащие друг напротив друга - равны. А также сумма углов, прилежащих к одной стороне, равна 180 градусов.
Сразу отметим, что угол C = 45 градусов, так как он лежит против угла А.
Угол B равен 180 - 45 = 135 градусов. Угол D равен 135 градусов, так как он лежит напротив угла B.