Точка м равноудалена от всех сторон ромба ,находится на расстоянии 2 см от плоскости ромба.найдите расстояние от точки м до вершин ромба ,если его диагонали 12 см и 16 см
Перефразируем : вершина M пирамиды равноудалена от всех сторон основания (ромба ABCD ), высота MO=2 . Пусть AC =16 см ; BD =12 см. Найти боковые ребра . Условие подсказывает, что высота проходит через центр O окружности вписанной в основании (ромб). Эта точка пересечения диагоналей AC и BD. AO=CO =AC/2 =16 см/2 =8 см ; BO =CO =BD/2 =6 см. Из ΔAOM по теореме Пифагора: MA = √(AO² +MO²) =√(8² +2²) =√68 =√4*17 =2√17 (см). MC =MA = 2√17 см. Аналогично найдем MB =MD =√(BO² +MO²) =√(6² +2²) =√40=√4*√10=2√10 ((см).
Пусть проекция точки на плоскость ромба -- точка . Пусть основания перпендикуляров из на стороны ромба -- (не важно, в каком порядке). Тогда, по теореме о трёх перпендикулярах, отрезки перпендикулярны отрезку . Таким образом, мы получаем четыре прямоугольных треугольника: , у которых общий катет и равны гипотенузы (по условию ), значит, все эти прямоугольные треугольники равны друг другу. Значит, , таким образом, точка так же равноудалена от сторон ромба, то есть лежит в центре вписанной окружности ромба, то есть на пересечении биссектрис, то есть это точка пересечения диагоналей (т. к. в ромбе диагонали являются биссектрисами).Пусть вершины ромба -- (так, что диагональ , а диагональ ). Тогда расстояние является гипотенузой прямоугольного треугольника , катет которого нам дан в условии, а катет находим исходя из того, что точка -- точка пересечения диагоналей в ромбе, поэтому делит их пополам. Значит,. По теореме пифагора находим . . , т. к. прямоугольные треугольники и равны по двум катетам. Абсолютно аналогично находим .
1)Пусть С- прямой угол в прямоугольном треугольнике АВС, тогда СН-высота проведенная к гипотенузе, СМ- биссектриса,проведенная к гипотенузе. 2)По условию сказано, что угол между СМ и СН равен 15 градусов. 3)По свойству биссектрисы угол АСМ= углу МСВ=45 градусов(т.к С по условию 90),значит, так как угол НСМ=15 градусов, а угол НСМ+угол АСН=45 градусов, то угол АСН равен 30 градусам. 4)Так как СН высота, то угол СНА равен 90 градусов, следовательно угол САН=60 градусов( по теореме о сумме углов треугольника). 5)Значит, в треугольнике АВС угол В = 180-90-60=30 градусов( по теореме о сумме углов треугольника) 6) Так как в прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы, то АС=3 см 7) По теореме Пифагора СВ= 3 корня из 3 ответ: 3 и 3корня из 3
№1 КМ и КН отрезок касательных проведенных из точки К к окружности с центром О.Найти КМ иКН если ОК=12 и угол МОН=120 градусам. №2 Диагональ ромба ABCD пересекаются в точке О.Доказать что прямая ВD касается окружности с центром А и радиусом ОС
1. Отрезки касательных, проведенных из одной точки, равны, т. е. КМ=КН КО - биссектриса угла МОН, след-но тр-ники КОМ и КОН - прямоугольные, с углами= 90, 60, 30 град. ОМ=ОН=6см. , КМ=КН=sqrt(144-36)=7sqrt2 2. Диагонали ромба точкой пересечения делятся пополам, т. е. АО=ОС, отсюда диагональ ромба ВD касается окружности с центром А и радиусом ОС
вершина M пирамиды равноудалена от всех сторон основания (ромба ABCD ), высота MO=2 . Пусть AC =16 см ; BD =12 см. Найти боковые ребра . Условие подсказывает, что
высота проходит через центр O окружности вписанной в основании (ромб). Эта точка пересечения диагоналей AC и BD. AO=CO =AC/2 =16 см/2 =8 см ; BO =CO =BD/2 =6 см.
Из ΔAOM по теореме Пифагора: MA = √(AO² +MO²) =√(8² +2²) =√68 =√4*17 =2√17 (см).
MC =MA = 2√17 см.
Аналогично найдем MB =MD =√(BO² +MO²) =√(6² +2²) =√40=√4*√10=2√10 ((см).
ответ : 2√17 см ; 2√10 см .