Восновании прямого параллелепипеда лежит ромб со стороной 12см и углом 60. меньшая диагональ параллелепипеда равна 13 см. найдите площадь полной поверхности параллелепипеда.
P = 4*12 =48 S = Sосн + Sбок S осн = 12*12*sin60 S осн = Найдем высоту (боковое ребро параллелепипеда) Рассмотрим Δ. Катеты 12 (меньшая диагональ ромба) и х (высота параллелепипеда) , гипотенуза 13 (диагональ параллелепипеда) х = 5 S бок = Р * h = 48*5= 240 S = 72 + 240 (см
Нарисуй чертеж ВМ=МС=а AN=ND=b (это обозничили мы так) треугольники APN и MPB подобны с коэффициентом b/a,и высоты тоже
треуг. NQD и CQM подобны с тем же коэфф b/a и высоты тоже. но если у треуг. APN и NQD AN=ND, то и высоты равны. Т.е. точки P и Q находятся на одинаковом расстоянии от AD что и требовалось доказать.
если по поводу высот , что они равны , непонятка, то это следует из того, что отношения высот малого и большого треуг. равно одному и тому же коэффициенту, а сумма этих высот постоянна (высота трапеции)
Треугольная пирамида, все боковые ребра равны, => высота пирамиды проектируется в центр описанной около треугольника (основания пирамиды) окружности. радиус описанной около произвольного треугольника окружности вычисляется по формуле: AC=1, BC=2, <C=60°. AB=? по теореме косинусов: AB²=AC²+BC²-2*AC*Bc*cos<C AB²=1²+2²-2*1*2*cos60° AB²=3, AB=√3
прямоугольный треугольник: гипотенуза с=√13 - боковое ребро пирамиды катет а=√3 радиус описанной около треугольника окружности катет Н -высота пирамиды, найти по теореме Пифагора: c²=a²+H², H²=(√13)²-(√3)². H=√10
S = Sосн + Sбок
S осн = 12*12*sin60
S осн =
Найдем высоту (боковое ребро параллелепипеда)
Рассмотрим Δ. Катеты 12 (меньшая диагональ ромба) и х (высота параллелепипеда) , гипотенуза 13 (диагональ параллелепипеда)
х = 5
S бок = Р * h = 48*5= 240
S = 72