Альпийская геосинклинальная (складчатая) область, самая молодая часть Средиземноморского геосинклинального пояса, включающая кайнозойские складчатые горные сооружения.
Охватывает складчатые системы Альп, Карпат, Балканского и Апеннинского полуостровов, Сицилии, прибрежных цепей Марокко, Алжира и Туниса, Пиренеев, Андалусских гор, Эгейского архипелага, остров Крит, полуострова Малая Азия, Крыма, Кавказа, Иранского нагорья и Гималаев — Евразия.
Развивалась на древнем, частью докембрийском — байкальском, частью палеозойском основании. Наиболее ранние геосинклинальные прогибы заложились в триасе — начале юры. Более поздние — в конце юры и в меловом периоде. В развитии области выделяются 2 этапа, разделённые во времени крупной фазой альпийской складчатости. Для первого (от триаса до конца палеогена) были характерны образования геосинклинальных прогибов, заполнение их осадочными и вулканическими толщами, складчатость и частные поднятия; для второго (конец палеогена, неоген, антропогеновый период), орогенного, или заключительного, типичны преобладающие поднятия, в результате которых оформились крупные горные системы (Гималаи, Б. Кавказ, Альпы и др.), а также межгорные впадины и краевые прогибы, заполненные неогеновыми и антропогеновыми (часто молассовыми и вулканическими) толщами.
В итоге огромных новейших поднятий горные хребты альпийского пояса достигли их совремённой высоты, превышающей местами 7 и даже 8 тыс. м.
Альпийская геосинклинальная (складчатая) область разделяется на ряд геосинклинальных систем, которые в процессе своего развития преобразовались в складчатые системы, различающиеся одна от другой особенностями строения и историей развития (например, системы Альп, Карпат, Крымско-Кавказская, Малого Кавказа и др.). Системы разделены большими или малыми значительными срединными массивами — остатками того основания, на котором развились геосинклинальные системы. Наиболее крупные срединные массивы: Сербско-Македонский, Родопский, Эгейский, Кыршехирский, Мендересский, Паннон-ский и др.
Альпийская геосинклинальная (складчатая) область выделена А. Д. Архангельским и Н. С. Шатским в 1933году.
Плоскость SAF пересекает оси OX в точке A (0, -1, 0) OY в точке M (0, -√3, 0) и OZ в точке S (0, 0, √3);
Координаты M и S очень легко вычислить, потому что OM = OS = OA*tg(60°) (треугольник ASD очевидно равносторонний).
Уравнение плоскости SAF выглядит так
- x - y/√3 + z/√3 = 1;
откуда вектор, нормальный к этой плоскости N = (-√3, -1, 1) (или любой ему пропорциональный).
Теперь надо найти угол между N и осью OX
cos(Ф) = Nx/INI = -√(3/5); по сути это ответ, знак косинуса не важен, его надо просто отбросить (минус означает, что вектор N "смотрит налево", не более того, но можно выбрать и противоположный ему вектор в качестве нормального)
Ф = arccos(√(3/5));
В задаче надо найти угол между BC и плоскостью SAF. Определение этого угла зависит от того, откуда и в какую сторону считать, но если выбрать ориентацию нормали и определить угол с плоскостью так, чтобы они оба были острые, то ясно, что угол с нормалью и угол с плоскостью вместе составляют 90°; отсюда нужный угол равен arcsin(√(3/5));