М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
russilian
russilian
31.07.2022 08:21 •  Геометрия

Вправильной шестиугольной пирамиде sabcdef, стороны основания которой равны 1, а боковые ребра равны 2, найдите синус угла между прямой bc и плоскостью saf

👇
Ответ:
sashadavydov2
sashadavydov2
31.07.2022
BC II AD; Пусть начало координат O в середине AD; Ось OX вдоль AD, ось OY -перпендикулярно (проходит через середины BC и EF), ось OZ  вдоль OS;
Плоскость SAF пересекает оси OX в точке A (0, -1, 0) OY в точке M (0, -√3, 0) и OZ в точке S (0, 0, √3);
Координаты M и S очень легко вычислить, потому что OM = OS = OA*tg(60°) (треугольник ASD очевидно равносторонний).
Уравнение плоскости SAF выглядит так
- x - y/√3 + z/√3 = 1;
откуда вектор, нормальный к этой плоскости N = (-√3, -1, 1) (или любой ему пропорциональный).
Теперь надо найти угол между N и осью OX
cos(Ф) = Nx/INI = -√(3/5); по сути это ответ, знак косинуса не важен, его надо просто отбросить (минус означает, что вектор N "смотрит налево", не более того, но можно выбрать и противоположный ему вектор в качестве нормального)
Ф = arccos(√(3/5));
В задаче надо найти угол между BC и плоскостью SAF. Определение этого угла зависит от того, откуда и в какую сторону считать, но если выбрать ориентацию нормали и определить угол с плоскостью так, чтобы они оба были острые, то ясно, что угол с нормалью и угол с плоскостью вместе составляют 90°; отсюда нужный угол равен arcsin(√(3/5));
4,4(68 оценок)
Открыть все ответы
Ответ:
kanzmak
kanzmak
31.07.2022


Альпийская геосинклинальная (складчатая) область, самая молодая часть Средиземноморского геосинклинального пояса, включающая кайнозойские складчатые горные сооружения.

Охватывает складчатые системы Альп, Карпат, Балканского и Апеннинского полуостровов, Сицилии, прибрежных цепей Марокко, Алжира и Туниса, Пиренеев, Андалусских гор, Эгейского архипелага, остров Крит, полуострова Малая Азия, Крыма, Кавказа, Иранского нагорья и Гималаев — Евразия.

Развивалась на древнем, частью докембрийском — байкальском, частью палеозойском основании. Наиболее ранние геосинклинальные прогибы заложились в триасе — начале юры. Более поздние — в конце юры и в меловом периоде. В развитии области выделяются 2 этапа, разделённые во времени крупной фазой альпийской складчатости. Для первого (от триаса до конца палеогена) были характерны образования геосинклинальных прогибов, заполнение их осадочными и вулканическими толщами, складчатость и частные поднятия; для второго (конец палеогена, неоген, антропогеновый период), орогенного, или заключительного, типичны преобладающие поднятия, в результате которых оформились крупные горные системы (Гималаи, Б. Кавказ, Альпы и др.), а также межгорные впадины и краевые прогибы, заполненные неогеновыми и антропогеновыми (часто молассовыми и вулканическими) толщами.

В итоге огромных новейших поднятий горные хребты альпийского пояса достигли их совремённой высоты, превышающей местами 7 и даже 8 тыс. м.

Альпийская геосинклинальная (складчатая) область разделяется на ряд геосинклинальных систем, которые в процессе своего развития преобразовались в складчатые системы, различающиеся одна от другой особенностями строения и историей развития (например, системы Альп, Карпат, Крымско-Кавказская, Малого Кавказа и др.). Системы разделены большими или малыми значительными срединными массивами — остатками того основания, на котором развились геосинклинальные системы. Наиболее крупные срединные массивы: Сербско-Македонский, Родопский, Эгейский, Кыршехирский, Мендересский, Паннон-ский и др.

Альпийская геосинклинальная (складчатая) область выделена А. Д. Архангельским и Н. С. Шатским в 1933году.








 













4,7(24 оценок)
Ответ:
Perestroika
Perestroika
31.07.2022
Хорошо! Для решения данной задачи, мы можем использовать несколько методов. Я предлагаю рассмотреть два способа решения - с использованием формулы для площади трапеции и с использованием формулы для площади треугольника.

1. Решение с использованием формулы для площади трапеции:
Для начала, нам необходимо найти высоту трапеции. Высота трапеции - это расстояние между основаниями, перпендикулярное им. Для этого можно воспользоваться теоремой Пифагора.

Мы знаем, что сторона AD равна 10 см, а сторона BC равна 8 см. Воспользуемся теоремой Пифагора:
AB^2 + BC^2 = AC^2
AB^2 + 8^2 = 10^2
AB^2 + 64 = 100
AB^2 = 100 - 64
AB^2 = 36
AB = √36
AB = 6 см

Теперь у нас есть высота трапеции AB, поэтому можем воспользоваться формулой для площади трапеции:
S = ((a + b) * h) / 2
где a и b - длины параллельных оснований, h - высота трапеции.

В нашем случае a = AD = 10 см, b = BC = 8 см, h = AB = 6 см:
S = ((10 + 8) * 6) / 2
S = (18 * 6) / 2
S = 108 / 2
S = 54 квадратных см

Ответ: площадь трапеции равна 54 квадратных см.

2. Решение с использованием формулы для площади треугольника:
Заметим, что треугольник ACD - это прямоугольный треугольник с гипотенузой AC. Мы знаем длины катетов AD и DC (они равны 10 см и 8 см соответственно), а также площадь треугольника ACD (она равна 30 квадратных см).

Теперь мы можем воспользоваться формулой для площади треугольника:
S = (a * b) / 2
где a и b - длины катетов прямоугольного треугольника.

В нашем случае a = AD = 10 см, b = DC = 8 см:
S = (10 * 8) / 2
S = 80 / 2
S = 40 квадратных см

Теперь нам нужно найти площадь трапеции. Трапеция состоит из двух треугольников ACD и BCD, поэтому мы можем сложить их площади:
S(trapezoid) = S(ACD) + S(BCD)
S(trapezoid) = 30 + 40
S(trapezoid) = 70 квадратных см

Ответ: площадь трапеции равна 70 квадратных см.

Я надеюсь, что мое объяснение было подробным и понятным для тебя. Если у тебя есть еще какие-либо вопросы, пожалуйста, не стесняйся задавать их!
4,7(32 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ