Найдем высоту данного правильного треугольника со стороной 10,3 м: Н=10,3*sin60º=8,92 м Проведем в треугольнике через 1 м прямые, параллельные основанию ( им может быть любая сторона равностороннего треугольника). При этом получим 9 уровней, или подобные треугольники, высота каждого из которых на 1 м меньше высоты предыдущего. Вычислив стороны каждого треугольника по формуле а=h/sin 60º, получим длину стороны второго треугольника 9,4, третьего - 7,99, четвертого и следующих соответственно 6,83,..5,68,..4,52,..3,73,..2,18,..1,03 ( в метрах). Ясно, что на каждом уровне поместится столько квадратов размером 1*1, сколько целых метров входит в длину стороны следующего по порядку треугольника. ( см. рисунок) Итак, всего квадратов площадью 1м² в данный треугольник поместится 9+7+6+5+4+3+2+1=37 ( квадратов)
В трапеции АВСД боковая сторона АВ перпендикулярна основанию ВС. Окружность проходит через точки С и Д и касается прямой АВ в точке Е. Найдите расстояние от точки Е до прямой СД, если АД=4, ВС=3.Решение начинаем с рисунка. Продлим сторону СД до пересечения с прямой АВ в точке М. Из вершины С трапеции опустим высоту СН на основание АД. АН=ВС=3 НД=АД-3=1 Рассмотрим треугольники МВС и СНД ∠ВСМ=∠НДС как соответственные при пересечении параллельных прямых секущей. Следовательно, треугольники ВМС и СНД подобны по двум равным углам - прямому и острому. Из подобия треугольников следует ∠ ВМС=∠ НСД ВС:НД=3:1 МС:СД=3:1 МС=3 СД Обозначим величину СД =х Тогда МС=3х, а МД=4х МЕ - касательная к окружности. МД = секущая Квадрат касательной равен произведению секущей на её внешнюю часть. МЕ²=МД*МС МЕ²=4х*3х=12х² МЕ=2х√3 Расстояние от точки до прямой измеряется перпендикуляром. ЕТ ⊥ МД Из прямоугольного треугольника МКЕ выразим ЕТ ЕТ=МЕ*sin ВМС. ∠ВМС=∠ НСД ( из подобия треугольников) sin∠ВМС=sin∠НСД=НД:СД=1:х ⇒ ЕТ=2х√3*1/х=2√3
АС=15, О-середина АС, АО=ОС=1/2АС=15/2=7,5, АК=4, КД=8, АД=4+8=12, треугольник АОК=треугольникМОС по стороне (АО=ОС)и прилегающим двум углам (уголАОК=уголМОС как вертикальные, уголОАК=уголОСМ как внутренние разносторонние), АК=МС=4, ВМ=ВС(АД)-МС=12-4=8, ВМ=КД=8, СД=АВ=корень(АС вквадрате-АД в квадрате)=корень(225-144)=9, треугольник АВМ=треугольник КСД как прямоугольные по двум катетам, площадьАВСД=АВ*АД=9*12=108, площадьАВМ=площадьКСД=1/2*КД*СД=1/2*8*9=36, площадьАМСК=площадьАВСД-2*площадьКСД=108-2*36=36
Н=10,3*sin60º=8,92 м
Проведем в треугольнике через 1 м прямые, параллельные основанию ( им может быть любая сторона равностороннего треугольника).
При этом получим 9 уровней, или подобные треугольники, высота каждого из которых на 1 м меньше высоты предыдущего.
Вычислив стороны каждого треугольника по формуле
а=h/sin 60º,
получим длину стороны второго треугольника 9,4, третьего - 7,99, четвертого и следующих соответственно 6,83,..5,68,..4,52,..3,73,..2,18,..1,03 ( в метрах).
Ясно, что на каждом уровне поместится столько квадратов размером 1*1, сколько целых метров входит в длину стороны следующего по порядку треугольника. ( см. рисунок)
Итак, всего квадратов площадью 1м² в данный треугольник поместится
9+7+6+5+4+3+2+1=37 ( квадратов)