Объяснение:
1) проитв большей стороны лежит больший угол, и наоборот
против меньшей стороны лежит меньший угол.
2) <1=75; <2=60; <3=180-(75+60)=45 =>
против ∠45°-лежит меньшая , против ∠75° -большая стороны Δ.
3) если Δ равнобедренный и прямоугольный, то угол при его вершине =90°, , два других угла по 45, ⇒ гипотенуза-основание лежащая против большего угла будет больше боковых сторон-катетов .
4) теорема: внешний угол Δ равен сумме двух других углов Δ, не смежных с ним.
рассуждаем два внешних угла равны ⇒ внутренние углы раны,
третий внешний угол вершине С в два раза меньше его внутреннего угла.( 180=х+2х) т.е. ∠С=120 ⇒ против ∠C и будет лежать большая сторона.
5) условия существования Δ : третья сторона должна быть меньше суммы двух других сторон, ⇒ в Δ основание =8, боковая сторона = 16
РΔ = 16+16+8=40
6) СДЕЛАЙ САМОСТОЯТЕЛЬНО
Есть пирамида АВСДА1В1С1Д1, где АВСД - нижнее основание, О - центр нижнего основания, т.Л - середина стороны СД. Аналогично назовем Л1 и О1 для верхнего основания А1В1С1Д1. Восстановим вершину усеченной пирамиды и назовем ее т.К.
Рассмотрим прямоугольный треугольник КЛО: т.к. КО - катет, лежащий против угла КЛО=30 градусов, то КЛ=2*КО. ОЛ=АД/2=24/2=12. Примем КО за х. Тогда КО^2+ОЛ^2=КЛ^2; х^2+12^2=(2х)^2; х=КО=4*корень из 3; КЛ=8*корень из 3.
Из подобия треугольников КЛО и КЛ1О1:
ОЛ/О1Л1=КО/КО1, отсюда КО1=О1Л1*КО/ОЛ=(20/2)*(4*корень из 3)/12=10/корень из 3
V усеч. = V(КАВСД) - V(КА1В1С1Д1)=S(АВСД)*КО/3- S(А1В1С1Д1)*КО1/3=
=24*24*4*(корень из 3)/3-20*20*(10/корень из 3)/3=2912/(3*корень из 3)
<CВМ=<АДМ как накрест лежащие при пересечении параллельных прямых АД и ВС секущей ВД;
<ВМС=<ДМА как вертикальные.
Значит ВМ/МД=ВС/АД=8/12=2/3
б) Из прямоугольного ΔАВД по т.Пифагора
АВ=√(ВД²-АД²)=√(169-144)=√25=5
Площадь ΔАВД Sавд=АВ*АД/2=5*12/2=30
В ΔАВД и ΔАВМ общая высота, поэтому их площади относятся как основания ВД и ВМ:
Sавм/Sавд=ВМ/ВД=2/5
Sавм=2Sавд/5=2*30/5=12