ABCDA1B1C1D1 куб. В1М - одна сторона сечения (соедини в и М1), В1С - вторая сторона сечения. Грани AA1D1D и BB1C1C расположены в параллельных плоскостях, следовательно, стороны сечения, которые находятся в этих гранях, будут параллельны, т.е. так же будет проходить через середину канта и вершину. Значит MD - третья сторона сечения. Аналогично, ND - четвертая сторона. MB1ND - искомое сечение. Его стороны соединяют вершины грани с серединой кантов, а у куба все грани квадраты, значит все стороны сечения равны.
А1В1=а, тогда А1М=а/2. Сторона сечения МВ1=√(a^2+(a/2)^2)=√(a^2+a^2/4)=√(5a^2/4)=a√5/2
Периметр Р=a√5/2 * 4=2a√5
ABCDA1B1C1D1 куб. В1М - одна сторона сечения (соедини в и М1), В1С - вторая сторона сечения. Грани AA1D1D и BB1C1C расположены в параллельных плоскостях, следовательно, стороны сечения, которые находятся в этих гранях, будут параллельны, т.е. так же будет проходить через середину канта и вершину. Значит MD - третья сторона сечения. Аналогично, ND - четвертая сторона. MB1ND - искомое сечение. Его стороны соединяют вершины грани с серединой кантов, а у куба все грани квадраты, значит все стороны сечения равны.
А1В1=а, тогда А1М=а/2. Сторона сечения МВ1=√(a^2+(a/2)^2)=√(a^2+a^2/4)=√(5a^2/4)=a√5/2
Периметр Р=a√5/2 * 4=2a√5
Точка К равноудалена от вершин квадрата, значит АК=ВК=СК=ДК.
Расстояние КО=12.
Диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы квадрата пополам: АО=ОС=ВО=ОД=АС/2=АВ*√2/2=6√2/2=3√2
Из прямоугольного ΔАКО найдем АК:
АК²=КО²+АО²=144+18=162
Расстояние от К до сторон квадрата - это равные перпендикуляры , опущенные на стороны. Например, перпендикуляр КН на сторону АД. В равнобедренном ΔАКД (АК=ДК) КН и высота, и медиана.
КН²=АК²-(АД/2)²=162-9=153
КН=3√17